Explore Astronomy

Astronomy Picture of the Day
« May 2018
July 2018 »


The Night Sky June 2018


Compiled by Ian Morison



See highlight above.

This page, updated monthly, will let you know some of the things that you can look out for in the night sky.  It lists the phases of the Moon, where you will see the naked-eye planets and describes some of the prominent constellations in the night sky during the month.


New

The author's: Astronomy Digest

which, over time, will provide useful and, I hope, interesting articles for all amateur astronomers.   A further aim is to update and add new material to link with the books recently published by Cambridge University Press and which are described on the home page of the digest.  It now includes over 40 illustrated articles.




Image of the Month

Abell Cluster S0740

Abell Cluster S0740
Image: NASA, ESA, Hubble Legacy Archive processed by Domingo Pestana

This galaxy cluster, Abell S0740, lies some 450 million light years distant in the constellation Centaurus.   It is dominated by the giant elliptical galaxy ESO 325-G004 which spans over 100,000 light years across and contains about 100 billion stars.   A beautiful image which has been processed by Dominigo Pestana.


Highlights of the Month


June - a great month to view Jupiter.

Jupiter
Jupiter imaged by Damian Peach

This is a still a great month to observe Jupiter which came into opposition on May 8th and will be visible in the south in the late evening   It is moving down the ecliptic and now lies in Libra so, sadly, will only reach an elevations of ~20 degrees when crossing the meridian.   An interesting observation is that the Great Red Spot appears to be diminishing in size.   At the beginning of the last century it spanned 40,000 km across but now appears to be only ~16,500 km across - less than half the size.   It used to be said that 3 Earths could fit within it, but now it is only one.   The shrinking rate appears to be accelerating and observations indicate that it is now reducing in size by ~580 miles per year.   Will it eventually disappear?

[I have imaged Jupiter recently and the Red Spot is very prominent and has a lovely orange/red colour.   These can be seen in my article 'Imaging Jupiter at Closest Approach' to be found in my Astronomy Digest ]  

The features seen in the Jovian atmosphere have been changing quite significantly over the last few years - for a while the South Equatorial Belt vanished completely (as seen in Damian's image) but has now returned to its normal wide state but is less prominent than the North Equatorial Belt.   The diagram on right shows the main Jovian features as imaged by the author at the beginning of December 2012. (When Jupiter was at a high elevation allowing a greater resolution image than now.)

The image by Damian Peach was taken with a 14 inch telescope in Barbados where the seeing can be particularly good.   This image won the "Astronomy Photographer of the Year" competition in 2011.

See more of Damian Peach's images: Damian Peaches Website"





Jovian Features
Features in Jupiter's atmosphere - December 2013.





June: Look for the Great Red Spot on Jupiter

Great Red Spot
Observe the Great Red Spot
Image: NASA

This list gives some of the best evening times during June to observe the Great Red Spot which should then lie on the central meridian of the planet. The times are in UT.

2nd   21:05         21st 21:45

4th   22:43         23rd 23:23

9th   21:51         26th 20:53

11th 23:29         28th 22:31

16th 22:37        

19th 20:06        


June - Find the globular cluster in Hercules and spot the "Double-double" in Lyra

M13
Use binoculars to find the globular cluster M13 in Hercules and the "Double-double" in Lyra
Image: Stellarium/IM

There are two very nice objects to spot with binoculars in the eastern sky well after dark this month.   Two thirds of the way up the right hand side of the 4 stars that make up the "keystone" in the constellation Hercules is M13, the best globular cluster visible in the northern sky.   The 15 minute exposure image on right was taken by the author using a 127 mm APO refractor and SBIG 8.3 megapixel CCD camera.

Just to the left of the bright star Vega in Lyra is the multiple star system Epsilon Lyrae often called the double-double.   With binoculars a binary star is seen but, when observed with a telescope, each of these two stars is revealed to be a double star - hence the name!

M13
M13 imaged by Ian Morison in May 2014



Late June: A very good time to spot Noctilucent Clouds!

May2nd
June: the chance to spot Noctilucent Clouds
Image: Wikipedia Commons

Noctilucent clouds, also known as polar mesospheric clouds, are most commonly seen in the deep twilight towards the north from our latitude.   They are the highest clouds in the atmosphere at heights of around 80 km or 50 miles.   Normally too faint to be seen, they are visible when illuminated by sunlight from below the northern horizon whilst the lower parts of the atmosphere are in shadow.   They are not fully understood and are increasing in frequencey, brightness and extent; some think that this might be due to climate change!   So on a clear dark night as light is draining from the north western sky long after sunset take a look towards the north and you might just spot them!


June 1st ~2 am: Saturn close to a waning gibbous Moon.

Saturn
The Moon and Saturn
In the early hours of the 1st, the waning gibbous Moon will lie over to the left of Saturn as they cross the meridian. [A good photo opportunity.]


June 3rd ~2:30 am: Mars and a waning gibbous Moon.

Mars
Mars and a waning gibbous Moon.
In the early morning of the 3rd, Mars will be seen down to the lower left of the gibbous Moon.


June 8th, after sunset: Venus to the lower left of Pollux in Gemini.

Venus
Venus near Pollux in Gemini.
After sunset on the 8th and given a low western horizon Venus will be seen to lie in Gemini down to the lower left of Pollux.


June 16th after sunset: Venus and a very thin crescent Moon

Venus
Venus and a very thin crescent Moon..
After sunset, if clear, you may be able to spot a very thin crescent Moon lying over to the left of Venus.   With binoculars or a telescope you might be able to see the 'Earthshine' which faintly illuminates the dark part of the lunar disk.


June 28th ~2:30 am: Saturn and the Full Moon.

Saturn
Saturn and the Full Moon.
In the early morning of the 28th, Saturn will be seen down to the lower left of the Full Moon - a nice photo opportunity.









June 22nd/23rd: Two Great Lunar Craters

20thJuly
Tycho and Copernicus: Ian Morison

Two great Lunar Craters: Tycho and Copernicus
These are two great nights (late evening on the 22nd) to observe two of the greatest craters on the Moon, Tycho and Copernicus, as the terminator is nearby.   Tycho is towards the bottom of Moon in a densely cratered area called the Southern Lunar Highlands.   It is a relatively young crater which is about 108 million years old.  It is interesting in that it is thought to have been formed by the impact of one of the remnents of an asteroid that gave rise to the asteroid Baptistina.   Another asteroid originating from the same breakup may well have caused the Chicxulub crater 65 million years ago.   It has a diameter of 85 km and is nearly 5 km deep.   At full Moon - seen in the image below - the rays of material that were ejected when it was formed can be see arcing across the surface.   Copernicus is about 800 million years old and lies in the eastern Oceanus Procellarum beyond the end of the Apennine Mountains.   It is 93 km wide and nearly 4 km deep and is a clasic "terraced" crater.   Both can be seen with binoculars.

Tycho's Rays
Full Moon showing Tycho's rays: Ian Morison

A Messier Object imaged with the Faulkes Telescope: Messier 1 - The Crab Nebula

Messier 1
The Crab Nebula, M1
Image:Nik Szymanik
Faulkes Telescope North.

The Crab Nebula, M16, imaged by Nik Szymanek.
This image was taken using the Faulkes Telescope North by Nik Szymanek - one of the UK's leading astro-photograpers.   The Crab nebula - the first entry in Charles Messier's catalogue - is the remnant of a supernovae that was seen to explode in the year 1054.   It is visible as the lower right of the pair of stars at the centre of the nebula and is a "neutron star" just 30km across but weighing more than our Sun!   Under the intense pressure of gravity, the protons and electrons fused to form neutrons and the compact object became stable as gravity was opposed by "neutron degeneracy pressure" - a quantum mechanical force.   It is now spinning just under 30 times a second and emitting two opposed beams of light and radio waves which pass across our location in space.   We thus detect very regular pulses and so objects like this are called pulsars.   At 8.4 magnitudes it is easily seen in a small telescopes under dark transparent skies appearing as a smudge of light which is a little underwhelming to see!

Learn more about the Faulkes Telescopes and how schools can use them: Faulkes Telescope"

















Observe the International Space Station

The International Space Station
The International Space Station and Jules Verne passing behind the Lovell Telescope on April 1st 2008.
Image by Andrew Greenwood

Use the link below to find when the space station will be visible in the next few days. In general, the space station can be seen either in the hour or so before dawn or the hour or so after sunset - this is because it is dark and yet the Sun is not too far below the horizon so that it can light up the space station. As the orbit only just gets up the the latitude of the UK it will usually be seen to the south, and is only visible for a minute or so at each sighting. Note that as it is in low-earth orbit the sighting details vary quite considerably across the UK. The NASA website linked to below gives details for several cities in the UK. (Across the world too for foreign visitors to this web page.)

Note: I observed the ISS three times recently and was amazed as to how bright it has become.

Find details of sighting possibilities from your location from: Location Index

See where the space station is now: Current Position


The Moon

3rd Quarter Moon
The Moon at 3rd Quarter. Image, by Ian Morison, taken with a 150mm Maksutov-Newtonian and Canon G7.
Just below the crator Plato seen near the top of the image is the mountain "Mons Piton".   It casts a long shadow across the maria from which one can calculate its height - about 6800ft or 2250m.
`
new moon first quarter full moon last quarter
June 13th June 20th June 28th June 6th

Some Lunar Images by Ian Morison, Jodrell Bank Observatory: Lunar Images

A World Record Lunar Image

World record Lunar Image
The 9 day old Moon.

To mark International Year of Astronomy, a team of British astronomers have made the largest lunar image in history and gained a place in the Guinness Book of Records!   The whole image comprises 87.4 megapixels with a Moon diameter of 9,550 pixels.  The resolution of ~0.4 arc seconds allows details as small as 1km across to be discerned!   The superb quality of the image is shown by the detail below of Plato and the Alpine Valley.  Craterlets are seen on the floor of Plato and the rille along the centre of the Alpine valley is clearly visible.  The image quality is staggering! The team of Damian Peach, Pete lawrence, Dave Tyler, Bruce Kingsley, Nick Smith, Nick Howes, Trevor Little, David Mason, Mark and Lee Irvine with technical support from Ninian Boyle captured the video sequences from which 288 individual mozaic panes were produced.   These were then stitched together to form the lunar image.

Plato and the Alpine valley
Plato and the Alpine Valley.

Please follow the link to the Lunar World Record website and it would be really great if you could donate to Sir Patrick Moore's chosen charity to either download a full resolution image or purchase a print.









The 8 day old Moon

Lunar Image
The 8 day old Moon imaged by Ian Morison.

This image was taken by the author on a night in March 2018 when the Moon was at an elevation of ~52 degrees and the seeing was excellent.   This enabled the resolution of the image to be largely determined by the resolution of the 200 mm aperture telescope and the 3.75 micron pixel size of the Point Grey Chameleon 1.3 megapixel video camera.   The use of a near infrared filter allowed imaging to take place before it was dark and also reduced the effects of atmospheric turbulence.   The 'Drizzle' technique developed by the Hubble Space Telescope Institute (HSTI) was used to reduce the effective size of the camera's pixels to allow the image to be well sampled.   Around 100 gigabytes of data, acquired over a 2 hour period, was processed to produce images of 54 overlapping areas of the Moon which were then combined to give the full lunar disk in the free 'stitching' program Microsoft ICE.   A further HSTI development called 'deconvolution sharpening' was then applied to the image.   The Moon's disk is ~6,900 pixels in height and has a resolution of 0.6 to 0.7 arc seconds.   Interestingly, as seen in the inset image, the rille lying along the centre of the Alpine Valley is just discernable and this is only ~0.5 km wide!   [Due to size limitations the large image is 2/3 full size.]









The Planets

 A montage of the Solar System
A montage of the Solar System. JPL / Nasa

Jupiter

Jupiter
A Cassini image of Jupiter . Nasa

Jupiter reached opposition on May 8th, so will be visible during the evening after darkness has fallen.   It shines at magnitude -2.5 (falling to -2.3 during the month) and has a disk some 44 (falling to 41.5) arc seconds across.   Jupiter's equatorial bands and sometimes the Great Red Spot (see 'highlights' for the times when it crosses Jupiter's central meridian) and up to four of its Gallilean moons will be visible in a small telescope.   Sadly, moving slowly westwards in Libra during the month, Jupiter is heading towards the southern part of the ecliptic and will only have an elevation of ~20 degrees when crossing the meridian.   Atmospheric dispersion will thus hinder our view and it might be worth considering purchasing the ZWO Atmospheric Dispersion Corrector to counteract its effects.


See highlights above.



Saturn

Saturn
The planet Saturn. Cassini - Nasa

Saturn, comes into opposition on the 27th of June and so will be visible during all the (few) hours of darkness.   Its disk has an angular size of 18.2 arc seconds increasing to 18.4 during the month.   Its brightness increases from +0.2 to +0.0 magnitudes as the month progresses.   The rings were at their widest some months ago and are still, at 25.7 degrees to the line of sight, well open and spanning ~2.5 times the size of Saturn's globe.   Saturn, lying in Sagittarius, is close to the topmost star of the 'teapot'.   Sadly, it will only reach an elevation of just over 15 degrees above the horizon when crossing the meridian.   Atmospheric dispersion will thus greatly hinder our view and, as for Jupiter, it might be worth considering purchasing the ZWO Atmospheric Dispersion Corrector to counteract its effects.




See highlight above.



Mercury

Mercury.
Messenger image of Mercury Nasa

Mercury passes behind the Sun (superior conjunction) on the 5th/6th June but will become visible (at around magnitude -0.7) low in the west after sunset by mid-month.   By month's end its magnitude will have dropped to -0.2 and it will set some one and a half hours after the Sun when it will have an angular diameter of 6.5 arc seconds.   Greatest elongation west of the Sun is on July 12th.





Mars

Mars showing Syrtis major.
A Hubble Space Telescope image of Mars.
Jim Bell et al. AURA / STScI / Nasa

Mars, in Capricornus, beings its retrograde motion westwards on the 28th June as it moves towards its closest approach to Earth since 2003 in two months time.   Mars it rises at around midnight BST at the start of the month and around 10:30 pm by month's end.   During the month Mars has a magnitude which increases from -1.2 to -2.1 and has an angular size of 15.3 increasing to 20.7 arc seconds so, with a small telescope, it will be possible to spot details, such as Syrtis Major, on its salmon-pink surface.   It will only reach an elevation of ~14 degrees before dawn so, sadly, the atmosphere will hinder our view.   Another reason for purchasing a ZWO Atmospheric Dispersion corrector?




See highlight above.

Venus

Venus
Venus showing some cloud structure

Venus, dominates the western sky after sunset, shining brightly at magnitude -3.9 (increasing to -4.1 during month) with an angular size of 13 arc seconds increasing to 15 arc seconds as the month progresses.   Venus rises a little higher in the sky during June, initially setting around two and a half hours after the Sun but a little less by month's end as its elevation at sunset stays at around 20 degrees.   Venus starts the month in Gemini, not far below and to the left of Pollux, but passes into Cancer on the 11th when, on the 19th and 20th, it lies close to the M44, the Beehive Cluster.

Radar Image of Venus
Radar image showing surface features


See highlights above.











The Stars

The late evening June Sky

May Sky
The June Sky in the south - late evening.

This map shows the constellations seen towards the south at about 11pm BST in mid June. High over head towards the north (not shown on the chart) lies Ursa Major. As one moves southwards one first crosses the constellation Hercules with its magnificent globular cluster, M13, and then across the large but not prominent constellation Ophiucus until, low above the southern horizon lie Sagittarius and Scorpio. To the right of Hercules lie the arc of stars making up Corona Borealis and then Bootes with its bright star Arcturus. Rising in the east is the beautiful region of the Milky Way containing both Cygnus and Lyra. Below is Aquilla. The three bright stars Deneb (in Cygnus), Vega (in Lyra) and Altair (in Aquila) make up the "Summer Triangle".

The constellation Ursa Major

Ursa Major
Ursa Major

The stars of the Plough, shown linked by the thicker lines in the chart above, form one of the most recognised star patterns in the sky. Also called the Big Dipper, after the soup ladles used by farmer's wives in America to serve soup to the farm workers at lunchtime, it forms part of the Great Bear constellation - not quite so easy to make out! The stars Merak and Dubhe form the pointers which will lead you to the Pole Star, and hence find North. The stars Alcor and Mizar form a naked eye double which repays observation in a small telescope as Mizar is then shown to be an easily resolved double star. A fainter reddish star forms a triangle with Alcor and Mizar.

Ursa Major contains many interesting "deep sky" objects. The brightest, listed in Messier's Catalogue, are shown on the chart, but there are many fainter galaxies in the region too. In the upper right of the constellation are a pair of interacting galaxies M81 and M82 shown in the image below. M82 is undergoing a major burst of star formation and hence called a "starburst galaxy". They can be seen together using a low power eyepiece on a small telescope.

M81 and M82
M81 and M82

Another, and very beautiful, galaxy is M101 which looks rather like a pinwheel firework, hence its other name the Pinwheel Galaxy. It was discovered in1781 and was a late entry to Messier's calalogue of nebulous objects. It is a type Sc spiral galaxy seen face on which is at a distance of about 24 million light years. Type Sc galaxies have a relativly small nucleus and open spiral arms. With an overall diameter of 170,000 light it is one of the largest spirals known (the Milky Way has a diameter of ~ 130,000 light years).

M101
M101 - The Ursa Major Pinwheel Galaxy

Though just outside the constellation boundary, M51 lies close to Alkaid, the leftmost star of the Plough. Also called the Whirlpool Galaxy it is being deformed by the passage of the smaller galaxy on the left. This is now gravitationally captured by M51 and the two will eventually merge. M51 lies at a distance of about 37 million light years and was the first galaxy in which spiral arms were seen. It was discovered by Charles Messier in 1773 and the spiral structure was observed by Lord Rosse in 1845 using the 72" reflector at Birr Castle in Ireland - for many years the largest telescope in the world.

M51
M51 - The Whirlpool Galaxy

Lying close to Merak is the planetary nebula M97 which is usually called the Owl Nebula due to its resemblance to an owl's face with two large eyes. It was first called this by Lord Rosse who drew it in 1848 - as shown in the image below right. Planetary nebulae ar the remnants of stars similar in size to our Sun. When all possible nuclear fusion processes are complete, the central core collpses down into a "white dwarf" star and the the outer parts of the star are blown off to form the surrounding nebula.

Owl Nebula Owl Nebula
M97 - The Owl Planetary Nebula Lord Rosse's 1848 drawing of the Owl Nebula

The constellation Hercules

Hercules
Hercules

Between the constellation Bootes and the bright star Vega in Lyra lies the constellation Hercules.The Red Giant star Alpha Herculis or Ras Algethi, its arabic name, is one of the largest stars known, with a diameter of around 500 times that of our Sun. In common with most giant stars it varies its size, changing in brightness as it does so from 3rd to 4th magnitude. Lying along one side of the "keystone" lies one of the wonders of the skies, the great globular cluster, M13. Just visible to the unaided eye on a dark clear night, it is easily seen through binoculars as a small ball of cotten wool about 1/3 the diameter of the full Moon. The brightness increases towards the centre where the concentration of stars is greatest. It is a most beautiful sight in a small telescope. It contains around 300,000 stars in a region of space 100 light years across, and is the brightest globular cluster that can be seen in the northern hemisphere.

Globular Cluster M13
The Globular Cluster M13 in Hercules. Image by Yuugi Kitahara

The constellation Virgo

Virgo
Virgo

Virgo, in the south-east after sunset this month, is not one of the most prominent constellations, containing only one bright star, Spica, but is one of the largest and is very rewarding for those with "rich field" telescopes capable of seeing the many galaxies that lie within its boundaries. Spica is, in fact, an exceedingly close double star with the two B type stars orbiting each other every 4 days. Their total luminosity is 2000 times that of our Sun. In the upper right hand quadrant of Virgo lies the centre of the Virgo Cluster of galaxies. There are 13 galaxies in the Messier catalogue in this region, all of which can be seen with a small telescope. The brightest is the giant elliptical galaxy, M87, with a jet extending from its centre where there is almost certainly a massive black hole into which dust and gas are falling. This releases great amounts of energy which powers particles to reach speeds close to the speed of light forming the jet we see. M87 is also called VIRGO A as it is a very strong radio source.

M87 MERLIN images
The Giant Elliptical Galaxy M87 HST image showing the jet

Below Porrima and to the right of Spica lies M104, an 8th magnitude spiral galaxy about 30 million light years away from us. Its spiral arms are edge on to us so in a small telescope it appears as an elliptical galaxy. It is also known as the Sombrero Galaxy as it looks like a wide brimmed hat in long exposure photographs.

The Sombrero Galaxy
M104 - The Sombrero Galaxy

The constellations Lyra and Cygnus

Cygnus and Lyra
Lyra and Cygnus

This month the constellations Lyra and Cygnus are rising in the East as darkness falls with their bright stars Vega, in Lyra, and Deneb, in Cygnus, making up the "summer triangle" of bright stars with Altair in the constellation Aquila below. (see sky chart above)

Lyra

Lyra is dominated by its brightest star Vega, the fifth brightest star in the sky. It is a blue-white star having a magnitude of 0.03, and lies 26 light years away. It weighs three times more than the Sun and is about 50 times brighter. It is thus burning up its nuclear fuel at a greater rate than the Sun and so will shine for a correspondingly shorter time. Vega is much younger than the Sun, perhaps only a few hundred million years old, and is surrounded by a cold,dark disc of dust in which an embryonic solar system is being formed!

There is a lovely double star called Epsilon Lyrae up and to the left of Vega. A pair of binoculars will show them up easily - you might even see them both with your unaided eye. In fact a telescope, provided the atmosphere is calm, shows that each of the two stars that you can see is a double star as well so it is called the double double!

The Double Double
Epsilon Lyra - The Double Double

Between Beta and Gamma Lyra lies a beautiful object called the Ring Nebula. It is the 57th object in the Messier Catalogue and so is also called M57. Such objects are called planetary nebulae as in a telescope they show a disc, rather like a planet. But in fact they are the remnants of stars, similar to our Sun, that have come to the end of their life and have blown off a shell of dust and gas around them. The Ring Nebula looks like a greenish smoke ring in a small telescope, but is not as impressive as it is shown in photographs in which you can also see the faint central "white dwarf" star which is the core of the original star which has collapsed down to about the size of the Earth. Still very hot this shines with a blue-white colour, but is cooling down and will eventually become dark and invisible - a "black dwarf"! Do click on the image below to see the large version - its wonderful!

M57 - The Ring Nebula
M57 - the Ring Nebula
Image: Hubble Space telescope

M56 is an 8th magnitude Globular Cluster visible in binoculars roughly half way between Alberio (the head of the Swan) and Gamma Lyrae. It is 33,000 light years away and has a diameter of about 60 light years. It was first seen by Charles Messier in 1779 and became the 56th entry into his catalogue.

M56 - Globular Cluster
M56 - Globular Cluster

Cygnus

Cygnus, the Swan, is sometimes called the "Northern Cross" as it has a distinctive cross shape, but we normally think of it as a flying Swan. Deneb,the arabic word for "tail", is a 1.3 magnitude star which marks the tail of the swan. It is nearly 2000 light years away and appears so bright only because it gives out around 80,000 times as much light as our Sun. In fact if Deneb where as close as the brightest star in the northern sky, Sirius, it would appear as brilliant as the half moon and the sky would never be really dark when it was above the horizon!

The star, Albireo, which marks the head of the Swan is much fainter, but a beautiful sight in a small telescope. This shows that Albireo is made of two stars, amber and blue-green, which provide a wonderful colour contrast. With magnitudes 3.1 and 5.1 they are regarded as the most beautiful double star that can be seen in the sky.

Alberio
Alberio: Diagram showing the colours and relative brightnesses

Cygnus lies along the line of the Milky Way, the disk of our own Galaxy, and provides a wealth of stars and clusters to observe. Just to the left of the line joining Deneb and Sadr, the star at the centre of the outstretched wings, you may, under very clear dark skys, see a region which is darker than the surroundings. This is called the Cygnus Rift and is caused by the obscuration of light from distant stars by a lane of dust in our local spiral arm. the dust comes from elements such as carbon which have been built up in stars and ejected into space in explosions that give rise to objects such as the planetary nebula M57 described above.

Deneb,the arabic word for "tail", is a 1.3 magnitude star which marks the tail of the swan. It is nearly 2000 light years away and appears so bright only because it gives out around 80,000 times as much light as our Sun. In fact if Deneb where as close as the brightest star in the northern sky, Sirius, it would appear as brilliant as the half moon and the sky would never be really dark when it was above the horizon!

There is a beautiful region of nebulosity up and to the left of Deneb which is visible with binoculars in a very dark and clear sky. Photographs show an outline that looks like North America - hence its name the North America Nebula. Just to its right is a less bright region that looks like a Pelican, with a long beak and dark eye, so not surprisingly this is called the Pelican Nebula. The photograph below shows them well.

The North American Nebula
The North American Nebula

Brocchi's Cluster An easy object to spot with binoculars in Gygnus is "Brocchi's Cluster", often called "The Coathanger",although it appears upside down in the sky! Follow down the neck of the swan to the star Alberio, then sweep down and to its lower left. You should easily spot it against the dark dust lane behind.

The Coathanger
Brocchi's Cluster - The Coathanger