ULL

Observational Constraints on the Polarization of AME (and prospects for QUIJOTE-CMB experiment)

> Carlos Hugo López Caraballo Instituto de Astrofísica de Canarias Universidad de La Laguna

> > July 2012 Manchester

Outline

- Polarization of the Anomalous Microwave Emission (PAME).
- Current Measurements:

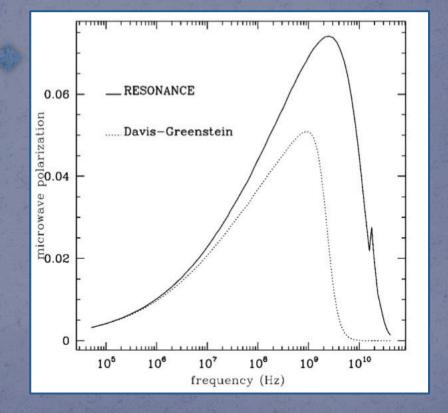
Galactic Regions: 6 regions. Dust Clouds: Perseus, p Ophiuchi, LDN1622, Pleiades HII : Helix and LPH96

Diffuse Galactic Emission: 2 works using WMAP3 and WMAP5

- QUIJOTE-CMB experiment.
- Implication for future B-modes experiments.

PAME: EDE Models

Electric Dipole

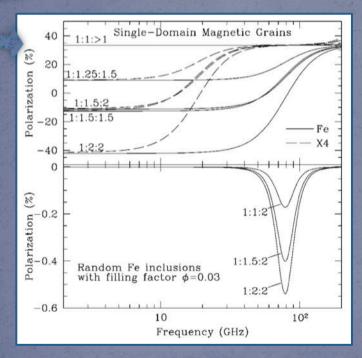

Intensity (1998)

- It is the most favoured physical process to explain the AME.
- It has been detected in individual regions and at large-scales.

Polarization

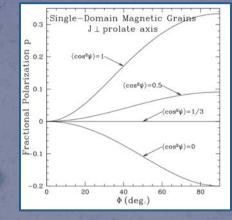
Lazarian and Draine 2000: Spinning dust and resonance relaxation.

Low levels of polarization: 6%-7% at 2-3GHz. 4%-5% at 10 GHz.
< 1% at 20 GHz.

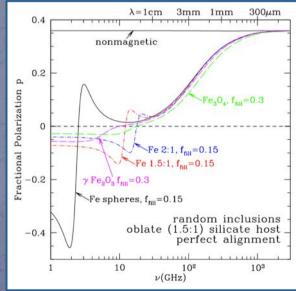


PAME: MDE Models

Magnetic Dipole Emission


(remember Hensley`s talk)

Draine and Lazarian 1999



Strong polarization levels in 20-30GHz

At 33 GHz (approx.): 10% - 30 % In perfectly-aligned.

Draine and Hensley 2012

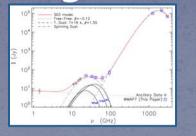
At 33 GHz (approx.): ≤ 10 % Depending on the Mg. Inclusions.

DL99 models correspond to maximal values

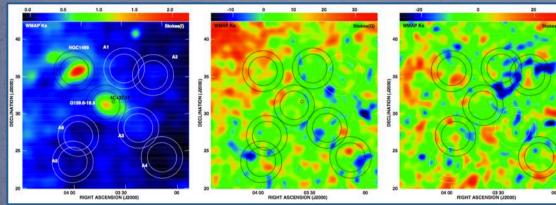
> New MDE family with Mag inclusions.

Low polarization levels at 10-30 GHz.

PAME: Observations

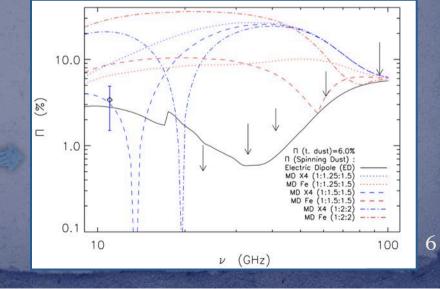

Current observational measurements

Name	Experiment	Resolution	П(9-11 GHz)	П(22 GHz)	П(30-33 GHz)	П(40 GHz)	References			
			[%]	[%]	[%]	[%]				
Galactic AME regions										
G159.6-18.5	COSMOSOMAS	1°	$3.4^{+1.5}_{-1.9}$				Battistelli et al. 2006			
**	WMAP7	1°		< 1.01	< 1.79	< 2.69	López-Caraballo et al. 2011			
"	WMAP7	1°		< 1.4	< 1.9	< 4.7	Dickinson et al. 2011			
LPH96	CBI	~ 9'			< 10		Dickinson et al. 2006			
**	WMAP7	1°		< 1.5	< 2.9	< 3.8	This work			
Helix	CBI	~ 9'			< 3.8		Casassus et al. 2007			
ρ -Ophiucus	CBI	~ 9'			< 3.2		Casassus et al. 2008			
"	WMAP7	1°		< 1.7	< 1.6	< 2.6	Dickinson et al. 2011			
LDN1622	GBT	x	< 2.7				Mason et al. 2009			
,,	WMAP7	1°		< 2.5	< 4.6	< 8.0	This work			
Pleiades	WMAP7	1°		< 10.6	< 28.5	< 82.2	This work			
Diffuse Galactic AME										
Full-Sky	WMAP3	1°	0.00	< 1	< 1	< 1	Kogut et al. 2007			
Full-Sky	WMAP5	1°		< 5		- 6040	Macellari et al. 2011			

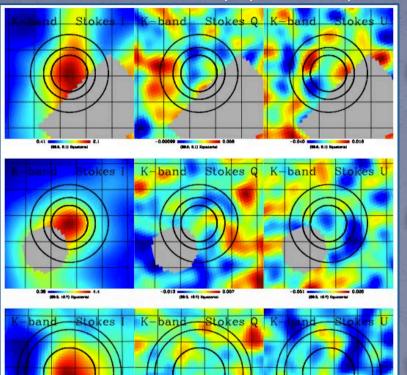

From Rubiño-Martín et al. 2012 (in prep.) (for AME Special Issue)
New upper limits for LDN1622, LPH96 and Pleiades (WMAP bands)

Galactic Regions: Perseus

G159.6-18.5 López-Caraballo et al. 2011


- Our results are compatible with Watson et al. 05.
- Recently studied by Planck.

The ring analysis (direct integration) was applied. rad₀=2 deg.


Polarization:

- At 23 GHz we obtained $\Pi < 1.1\%$.
- It was the first multifrequency analysis of PAME.
- Comparing with PAME models: MD from DL99 and ED from LD00.

Galactic Regions: New Constraints.

Rubiño-Martín et al. 2012 (in prep. for AME Special Issue)

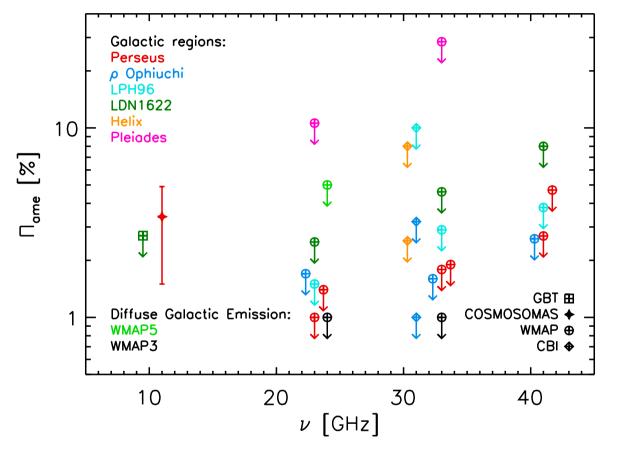
Resolution: 1 deg. Grid:1degx1deg

> LDN1622 (dark cloud): At 9.5 GHz 2.7% (GBT).

LPH96 (HII region): At 31 GHz 10% (CBI).

Pleiades (reflection nebula): First upper limits at 30-40 GHz.

2σ upper limits								
name	П _{ате} (%)							
	23 GHz	33 GHz	41 GHz					
Peseus	<1.01	<1.79	<2.69					
LDN1622	<2.5	<4.6	<8.0					
LPH96	<1.5	<2.9	<3.8					
Pleiades	<10.6	<28.5	<82.2					


We considered a fit model: f-f, thermal dust and CMB.
Polarized upper limits were de-biased following the

formalism of Vaillancourt 2006.

7

PAME: Current Observations

From the first table.

Upper limits provide a valuable tool to understand the physical mechanism responsible for AME.

PAME: Observational constraints

- Electric Dipole (ED): Cold Neutral Medium. (LD00)
- Magnetic Dipole (MD): MD x4: grains in a single magnetic domain \rightarrow (DL99) Maximal values.

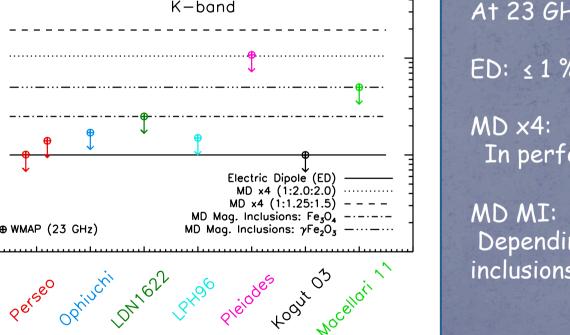
MD MI: grains with magnetic inclusions. \rightarrow (DL99 and DH12)

10.0

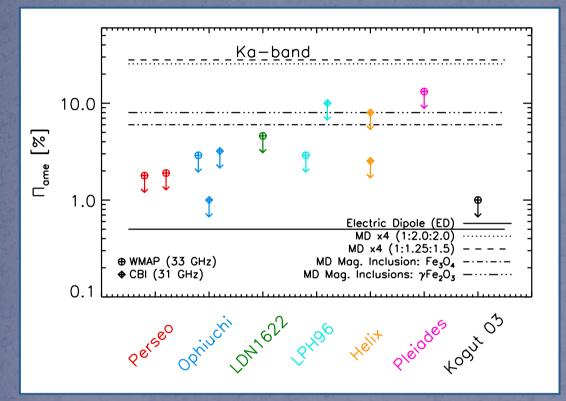
1.0

0.1

⊕ WMAP (23 GHz)


8

∏_{ame} |


 \rightarrow (DH12)

At 23 GHz (approx.): ED: ≤1% (max. value) MD x4: 10% - 20 % In perfectly-aligned.

MD MI: \leq 5 % Depending on the Mg. inclusions.

PAME: Observational constraints

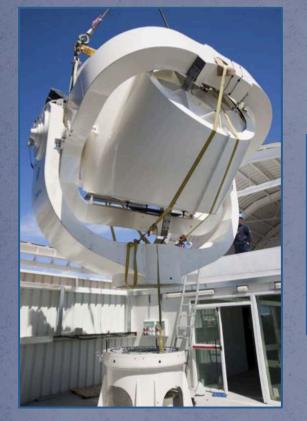
At 33 GHz (approx.):
ED: ≤ 0.5 % (max. value)
MD x4: 20% - 30 % In perfectly-aligned.
MD MI: ≤ 10 %

 $\begin{array}{c} \text{MD M1: } \leq 10 \ \text{\%} \\ \text{Depending on the Mg.} \\ \text{inclusions.} \end{array}$

- We exclude several models based on magnetic emission.
- We cannot rule out the magnetic emission as the physical process responsible for the observed polarization.

... this is the end of first part

PAME as Foreground?

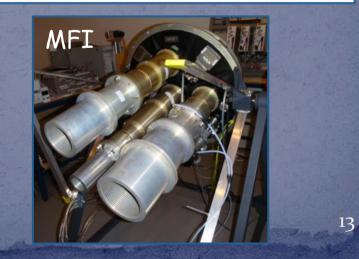

- In intensity, AME is an important foreground at 20-30 GHz.
- Observations provide fractional polarization levels lower than 1% at 20-30GHz.
- Kogut et al. 2007 and Macellari et al. 2011: PAME could be considered as diffuse Galactic emission.

PAME as Foreground?

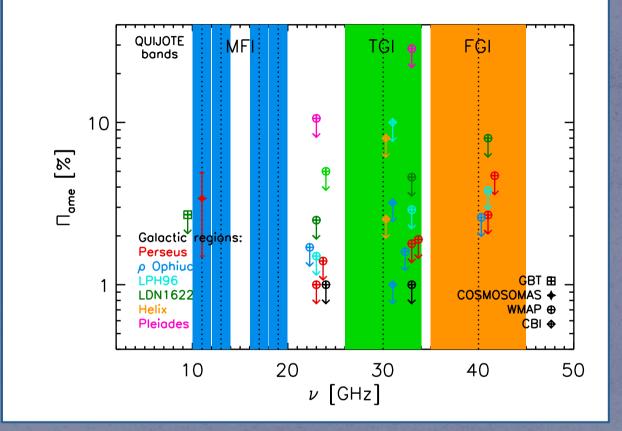
- In intensity, AME is an important foreground at 20-30 GHz.
- Observations provide fractional polarization levels lower than 1% at 20-30GHz.
- Kogut et al. 2007 and Macellari et al. 2011: PAME could be considered as diffuse galactic emission.
- CMB polarization (B-modes) is a useful tool to study the inflationary epoch.
- Spectral and spatial information about the foregrounds is needed for component separation methods.
- PAME could affect experiments as QUIJOTE.

Q-U-I JOint Tenerife experiment

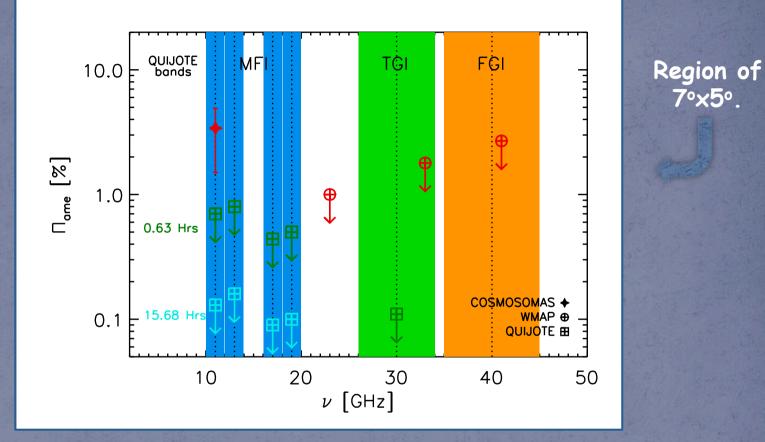
(see Ricardo's and Stuart's talk)



- Located at the Teide Observatory.
- 2 Telescopes and 3 instruments.
- To date: Telescope 1 and MFI instrument.
- Goals: synchrotron polarization and the detection of B-modes.


	MFI				TGI	FGI	
Nominal Frequency [GHz]	11	13	17	19	30	30	40
Bandwidth [GHz]	2	2	2	2	8	8	10
Number of horns	2	2	2	2	1	31	40
Channels per horn	4	4	4	4	2	4	4
Beam FWHM [°]	0.92	0.92	0.60	0.60	0.37	0.37	0.28
$T_{\rm sys} \; [{ m K}]$	25	25	25	25	35	35	45
NEP $[\mu K s^{1/2}]$	280	280	280	280	390	50	50
Sensitivity $[Jy s^{1/2}]$	0.30	0.42	0.31	0.38	0.50	0.06	0.06

- MFI : 11, 13, 17 and 19 GHz.
- TGI : 30 GHz.
- FGI : 40 GHz.



Quijote: frequency bands MFI (11, 13, 17 and 19 GHz); TGI (30 GHz) and FGI (40 GHz)

- MFI covers a range where PAME have been barely studied.
 3 bands where PAME has not been measured before.

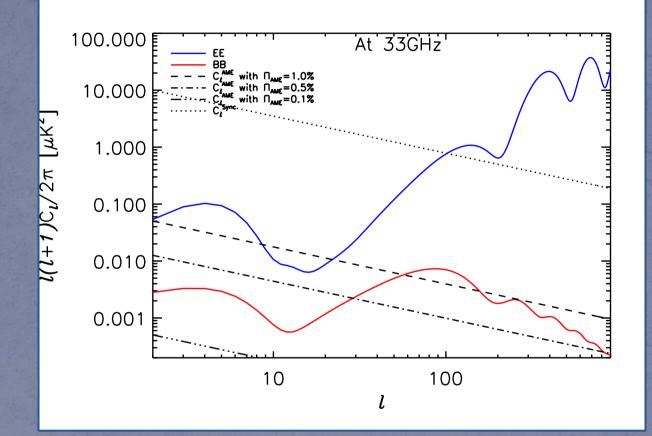
Quijote: PAME on Perseus

- Prediction for the PAME measurements from the nominal sensitivity values of the QUIJOTE-CMB experiment.
- At 19 GHz we need 0.6 h and 16 h to obtain 2σ upper limits of 0.5% and 0.01 % respectively.

7°×5°.

Implications on B-modes

- CMB polarization (B-modes) opens a new window to test the inflationary epoch.
- From Page et al. 2007 and Gold et al. 2010:


$$\frac{\ell(\ell+1)C_{\ell}^{\text{E,B,AME}}}{2\pi} = A_{\text{AME}} \ell^{-\alpha} \Pi_{\text{AME}}^2 \quad \alpha = -0.0$$

 From Macellari et al. 2010 we obtain an AME amplitude of 27.6 μK at 33 GHz.

$$(\Delta T)^2 = \sum_{l=2}^{\infty} \frac{2l+1}{4\pi} C_l W_l$$

• Π_{ame} = 1%, 0.5% and 0.1% at 33 GHz (review results).

Implication on B-modes

• PAME large-scale contribution could affect the B-mode estimation at 33 GHz.

Conclusions

- At 23 GHz we have ≤1% (2σ), both in individual and large-scale regions.
- In regions with multi-frequency measurements (Perseus and LDN1622), contraints are in agreement with the predictions of the electric dipole.
- MFI instrument of QUIJOTE-CMB will allow us to study the PAME in a different frequency range, with a significant high sensitivity.
- PAME could be an important foreground component in the 20-30 GHz frequency range for B-mode experiments.