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Overview of the talk

Examples of RFI.

Multichannel interference mitigation techniques.

Reformulation of radio astronomical imaging.

E�ect of interference suppression on image formation.

Data driven image formation.
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RFI example: observed GSM mobile/base station transmissions
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RFI example: GPS transmissions/Television carriers
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Astronomical imaging
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The correlation process
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Mitigation techniques

1. Blanking: Simple to implement, good for intermittent signals, single=multichannel,

narrowband=wideband, no substantial e�ect on image formation.

2. Spatial �ltering: medium complexity, signal independent, multichannel, nar-

rowband signals (wide band signals through sub-band processing).

3. Spatio-temporal processing: High complexity, signals independent, multichan-

nel.

4. Signal exploiting methods: High complexity (di�erent system for each class of

signals), single=multichannel, good performance.

5. High order blind methods. High complexity.
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Example of balnking results: HI superimposed on GSM signals
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Spatial �ltering

Suppose we detect an interferer:

R ' �2saa
H + �2I + Rv

and have an estimate ^a

2 Temporal �ltering: blanking

2 Spatial �ltering:

{ projection ~R = P?
^aRP
?

^a = �2P?
^a + P?
^aRvP
?

^a

{ subtraction of a reference source ~R = R� ^�2s^a^a
H

Rv can be a�ected: the `dirty beam' becomes space-varying

) need to store the e�ective spatial �lter on the 10s data.
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Astronomical imaging

Coordinate system

For a small �eld of view: s = s0 + � ; s0 ? �

s0 = [0; 0; 1]

� = [`; m; 0]

planar array: r1 � r2 = �[u; v; 0] where � =
c

f

Simpli�ed imaging equation

Vf (u; v) =

ZZ
If (`;m) e�j2�(u`+vm) d`dm

Given Vf , we can compute the brightness image (`map') If via an inverse Fourier

transform.
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Astronomical imaging - point source model

Assuming that the astronomical skies are a collection of d point sources (maybe

unresolved) we obtain:

Vf (r1; r2) =

dX
i=1

e�j2�f s
T

i (r1�r0)=cIf (si)e
j2�f sTi (r2�r0)=c

2 si is the coordinate of the i'th source.

2We choose an arbitrary reference point typically the central element of the array,

and measure the phase di�erence with respect to that point.
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Astronomical imaging - matrix formulation

If we look at all baselines measured simultanuously at time tk as a matrix we obtain

Rf;k = Af;kBfA
H

f;k (1)

where

a(si; tk; f) =
2

6664
e�j2�f s
T

i (r1(tk)�r0(tk))=c

...

e�j2�f si(tk)
T (rp(tk)�r0(tk))=c

3
7775

Af;k = [a(s1; tk; f); : : : ;a(sd; tk; f)]

and

Bf =
2

6664
If (s1)

. . .
If (sd)

3
7775
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Astronomical imaging - noisy case and self-calibration

When we have measurement noise which is �2I and an unknown complex gain for

each antenna element we obtain that asymptotically (from now on we �x f)

Rk = �kAkBA
H

k �
H

k + �2I

where

�k =
2

6664
g1;k

. . .
gp;k

3
7775

are the calibration coeÆcients.
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The dirty image: Two view points

ID(`;m) =

X
l

Il B(`;m; `l;ml) =

X
l

Il Bl(`;m)

where

Bl(`;m) :=

X
i

X
j

cij e
�2�|(uj`l+vjml) e2�|(ui`+vim) :

Every point source excites a beam centered at its location (`l;ml)

Beamforming interpretation
I 0D(s) :=

X
k

w
H

k (s)Rkwk(s) (2)

Here, wk(s) is the beamformer pointing towards direction s, in classical imaging

wk = ak(s).
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The CLEAN algorithm

1. Find the brightest point in the dirty image.

2. Subtract from the dirty image the dirty beam centered at the location of the

peak and multiplied by 


3. If the residual image is not noiselike goto step (1)

4. Convolve the point sources obtained at steps (1-3) with an ideal synthetic

beam.

5. Add the residual image to the generated image.
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CLEAN in the visibility domain

Finding the brightest point s0 in the image is equivalent to trying to �nd a point

source using classical Fourier beamforming, i.e., ,

^s0 = argmax

s

KX
k=1
a
H

k (s)
�

Rk � �2I
�

ak(s) : (3)

Thus, the CLEAN algorithm can be regarded as a generalized classical sequential

beamformer, where the brightest points are found one by one, and subsequently

removed from Rk until the LS cost function is minimized.

Removing the estimated source can be performed by sub-

tracting its contribution to the visibility covariance ma-

trices.
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LS in the visibility domain

If we forget for a moment the computational issue we can present the LS cost function

using direct Fourier transform as the following problem:

[f^slg
d

l=1; ^B] = min

fslg
d

l=1
;^B

KX
i=k
kRK �AkBA
H

k � �2Ik2F (4)

This is just self-cal initialized by � = I, where self-cal is:

h
f^slg
d

l=1; ^B; ^�k
i

= min

fslg
d

l=1
;B;�

KX
k=1
kRk � �kAkBA
H

k �
H

k � �2Ik2F (5)

We would also like to constrain the matrix ^B to have positive diagonal, and zeros

elsewhere(for non-coherent sources.
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CLEAN with spatial projections

After Projecting out the interference we are left with modi�ed covariance matrix

~Rk := LkRkL
H

k = Lk
�

Ak(fslg)BA
H

k (fslg) + �2I
�

L
H

k :

This modi�es the least squares optimization problem to

h
f^slg; ^B
i

= argmin

fslg;B;f�kg

KX
k=1
kLk
�

Rk � Ak(fslg)BA
H

k (fslg) � �2I
�

L
H

k kF :

The dirty image can now be rede�ned as

I 0D(s) =

PK
k=1 a
H

k (s)L
H

k
�

LkRkLk � �2LkL
H

k
�

Lk| {z }

R0
k

ak(s) =

PK
k=1 a
H

k (s)R
0

kak(s) ;

And the modi�ed CLEAN can be done by sequential beamforming and subtraction

in the visibility domain.
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Data driven imaging

To reduce the sidelobe response we would like to solve

^wk(s) = argmin

wk

w
H

kRkwk such that w
H

kak(s) = 1 :

The solution to this problem is

^wk = �kR
�1

k ak(s) ; where �k =

1

aHk (s)R
�1

k ak(s)
:

I 0D(s) =

KX
k=1

1

aHk (s)R
�1

k ak(s)
:

and the locations of the strongest sources are given by the maxima of I 0D(s).
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Simulation: The e�ect of spatial �ltering on the image
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Simulation: Comparing images
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