

### LISA & Multi-Messenger Astronomy

Lee Samuel Finn Penn State





## Gravitational Wave Astronomy

- Energetic astronomical phenomena are associated with strong gravitational potentials
  - (v/c)<sup>2</sup> ~ M/r
- Strong gravitational wave sources are compact with internal bulk motion v ~ c
- Gas, dust accumulate in strong potentials, obscure EM emission from central engine



The universe is transparent to gravitational waves CENTER FOR GRAVITATIONAL WAVE PHYSICS

# Galactic Structure

Dust, gas, faintness limit EM observations of galactic stellar density distribution

Galaxy is transparent in gravitational waves



| Туре     | Resolved | With df/dt |
|----------|----------|------------|
| (wd, wd) | >104     | ~600       |
| AM CVn   | >104     | ~50        |
| (ns,wd)  | 21       | 3          |
| Other    | 2        | 0          |

Nelemans 2003

Transparency provides detailed projected imagery of bulge, disk, halo (Holley-Bockelmann, Rubbo, LSF)

#### ■ Galactic Structure & the WD population



- Gravitational wave intensity, polarization, period, fixes orbital sin *i*, sky location, ratio of "chirp mass"  $\mathcal{M}(m_1,m_2)^{5/3}$  to distance d
- Optical id as a single-line spectroscopic binary determines projected semimajor axis  $a \sin i$  and mass function  $f_m = (m_2 \sin i)^3 / (m_1 + m_2)^2$
- Simultaneous gravitational wave, spectroscopic optical id fixes full orbital solution, component masses and absolute distance

Joint gw, optical observations provide a 3-D map of galaxy CENTER FOR GRAVITATIONAL WAVE PHYSICS

# Gravitational Waves and the IMBH Population

Ultra-luminous X-ray sources (ULXs) & the dynamics of some globular cluster cores suggest the existence of IMBHs: black holes with mass  $\sim 10^2 - 10^5 \text{ M}_{\odot}$ 

Capture of a star by an IMBH will give rise to coincident gravitational wave bursts and X-ray flares as the star is disrupted



Globular Star Clusters Hubble Space Telescope • WFPC2 NASA, The Hubble Heritage Team (AURA/STScI) and M. Rich (UCLA) • STScI-PRC02-18

### WD capture & disruption by 10<sup>3</sup> M<sub>☉</sub> IMBH





SPH simulation

Kobayashi, Laguna, Phinney, Mészáros



#### X-ray, gravitational waves, and IMBH angular momentum



# SMBH black holes



Colliding galaxies lead to supermassive black hole binaries. Before coalescence binary sweeps central region free of gas, dust & stars, truncating accretion disk and reducing X-ray emission



Hermann, Hinder, Laguna, Shoemaker



Binary inspiral and coalescence leads to observable gravitational wave signal & localizes the host galaxy



& Phinney

Gas & dust fall back, "restoring" accretion disk on timescale of ~7(1+z)(M/10<sup>6</sup>M<sub>☉</sub>)<sup>1.32</sup> yr. Thermal emission evolution traces accretion disk formation



# LISA Analysis Challenges

- LIGO: sources weak, rare
- LISA: sources strong, abundant
- P<sub>orb</sub> > 10<sup>3</sup> s wd binaries are so plentiful they can't be individually resolved!
- > I yr<sup>-1</sup> SMBH coalescence with SNR > 100
- Challenges:
  - How well can we separately resolve, characterize so many overlapping sources?
  - Binary waveforms are sinusoidal and any signal can be expressed as a sum over sinusoids: how well can we distinguish an arbitrary source from a collection of binaries?
    CENTER FOR GRAVITATIONAL WAVE PHYSICS

#### # LISA resolvable compact binaries

| Туре     | Resolved | With df/dt |
|----------|----------|------------|
| (wd, wd) | >104     | ~600       |
| AM CVn   | >104     | ~50        |
| (ns,wd)  | 21       | 3          |
| Other    | 2        | 0          |

Nelemans 2003

# LISA Analysis Challenges

 Model, identify and characterize extreme mass ratio inspirals and bursts



Drasco & Hughes

PENNSTATE



- Modeling: Radiation reaction, interaction with black hole drives orbital evolution
- Identify, characterize: "matched filtering" impossible/impractical

PENNSTATE

10

Synergy: the interaction or cooperation of two or more agents to produce an effect greater than the sum of their separate effects...

