Galactic transients and fast radio bursts : Radio emissions from pulsar companions

F. Mottez and P. Zarka

Astronomy & Astrophysics, in press.

- A dozen FRBs known (Parkes & Arecibo)
- DM = 100's \rightarrow 1000, mostly extragalactic \rightarrow distance 0.5 3 Gpc
- 1-5 msec duration, 1 scattering tail
- ~1 Jy level \rightarrow very high intensity, $E_{iso} \sim 10^{33}$ J

- super-energetic scenarii (mini BH annihilation, WD or NS mergers, implosion of supra-massive NS...) → isolated events
- giant pulses of young pulsars, close-by flaring stars ? → irregularly repeatabe but inconsistent with DM

- We propose an explanation requiring modest energy, consistent with observations :
- Interaction Pulsar wind Companion (WD, planet, asteroid) → intense radio waves ?
- Io-Jupiter interaction → Alfvén Waves → J → energetic e⁻
 - \rightarrow 10¹² W dissipation including radio waves near central object

[Saur et al., 2004 ; Hess et al., 2007]

Same physics for WD-planet interaction

[Willes & Wu, 2004]

- Interaction Pulsar Wind (relativistic) companion
 - → relativistic Io-Jupiter or WD-planet interaction
 - \rightarrow radio waves in Alfvén wings ?

• Io-Jupiter \rightarrow both Alfvén wings to the planet

- Star exoplanet
 - → 1 Alfvén wing propagates
 counterflow of the stellar wind,
 & 1 goes to infinity

[Preusse et al., 2006]

- Pulsar : radial relativistic wind
 - $(\gamma \sim 10^{1} 10^{7}),$

Poynting flux dominated, $B=B_{\Phi}$ [Mottez & Heyvaerts, 2011]

Chandra

Hubble

- Pulsar companion at 100's r_{LC}
- $V_{wind} < V_A$, V_{fast} , all ~ c \rightarrow no shock \rightarrow AW connected to companion

• Io-Jupiter : E = V x B ~ 0.1 V/m \rightarrow U ~ 400 kV , I ~ 3x10⁶ A \rightarrow P ~ 10¹² W

[Bagenal, 2007]

• Pulsar : E = 10^{4-6} V/m \rightarrow U \sim 2RE \sim 10^{11-13} V, I \sim 10^{9-11} A, P \sim 10^{20-24} W (depending on B_{pulsar}, P_{pulsar}, R_{companion} - here 10^{5-8} T, R_{Earth}, 1 sec)

• Hypothesis of aligned Pulsar B \rightarrow angle AW / radial direction = $\delta + /\delta$ small, symmetrical or not depending on $x = \frac{r}{\gamma_0 r_{LC}}$

<i>r</i> (AU)	γ_0	x	δ ₊ (°)	δ_ (°)	τ_+/s	τ_{-} (s)
0.1	10	78.	5.7	-5.6	3. 10-3	3. 10-3
0.01	10 ³	7.8 10 ⁻²	1.4	-2.10^{-3}	1. 10 ⁻⁴	8. 10 ⁻²
0.1	10 ³	0.78	0.16	-2.10^{-2}	1. 10 ⁻³	1.10 ⁻²
1.0	10 ³	7.83	6.5 10 ⁻²	-5.10^{-2}	3. 10 ⁻³	4. 10 ⁻³
40.	10 ⁵	3.13	7.8 10 ⁻⁴	-42 10-4	2. 10 ⁻³	5. 10 ⁻³
10.	105	0.78	1.7 10-3	-2.10-4	1. 10-3	1.10-2
0.1	105	7.8 10-3	0.14	-2.10-6	(1.10 ⁻⁵)	0.85
0.01	106	7.8 10 ⁻⁵	1.4	-2.10-9	(1.10^{-7})	85

- Jupiter : radio source ~fixed / Jupiter & Io because unstable e- distribution (at f ~ f_{ce}) near the planet
- Cyclotron Maser Instability : Resonance condition $\omega = \omega_c / \Gamma k_{\parallel} v_{\parallel}$
 - [Treumann, 2006]

Growth rate

 $\gamma = \frac{\omega_p^2 c^2}{8\omega_c} \int_0^{2\pi} v_\perp^2(\theta) \nabla_{\nu_\perp} f(\mathbf{v}_0, \mathbf{R}(\theta)) d\theta$

[Roux et al., 1993]

- Radio emission fixed in pulsar frame \rightarrow not detectable at Gpc distances
- AW to infinity $\rightarrow \exists$? radio source convected in the wind along AW at V_{wind}/cos δ ?
 - → possible only for δ- wing if x<<1, both δ- & δ+ if x>>1 δ → 1/γ for large γ

- In source frame (V_{Source}, Oxyz)
 - \rightarrow significant V_x & B_{//} (B_{Φ} = B_{Φ o}/ γ)
 - → large V_{\perp} = large free energy source for CMI

[Roux et al., 1993]

- Most unstable waves : f ~ $f_{ce_source}\,,\,cone\,\theta$ ~85°-90°
- Plasma distribution non gyrotropic (at given azimuth)
 - \rightarrow growth rate maximum at same azimuth (+ opposite ?)

• Plasma crosses the AW in $\tau_s \sim \eta R_b / \delta \gamma_0 v_0$ ~ msec - sec >> saturation time (10's of µsec)

[Pritchett, 1986]

- Relativistic "aberration"
 - \rightarrow radiation from a moving source : half-space "folded" in cone of half-angle ~ 1/ γ
 - \rightarrow luminosity in the cone $~~\times\gamma^{2}$
- CMI non isotropic: hollow cone (+ hot spots when plasma distribution non gyrotropic)
 - → diagrams in source & observer's frame (z along wind radial direction)
 - → sweeps observer in angle/360*Porbital

- $\gamma = 10$, a = 0.1 AU, $\theta = 85^{\circ} \rightarrow 2$ hot spots separated by several $^{\circ}$
- If B tilted, oscillation \rightarrow several bursts separated by pulsar period, of \neq intensities

- $\gamma = 10^3$, a = 0.1 AU, $\theta = 85^\circ$
- → small angle → rare events, up to 4 pulses
 (2 intense) separated by 10's of sec to min

- $\gamma = 10^{6}$, a = 0.1 AU, $\theta = 85^{\circ}$
- → 1 emitting wing
- → grey disk crossed in msec (in sec for $\gamma = 10^5$)

• Frequency $f_{ce_source} \rightarrow f_{ce_observer}$:

$$f_{c,o} = 25 \ \gamma \ \left(\frac{B_*}{10^5 \text{T}}\right) \left(\frac{1 \text{AU}}{r}\right)^2 \left(\frac{R_*}{10^4 \text{m}}\right)^2 \left\{1 + \left[\frac{\pi \ 10^5}{\gamma} \left(\frac{10 \text{ms}}{T_*}\right) \left(\frac{r}{1 \text{AU}}\right)\right]^2\right\}^{1/2}$$

10's MHz to GHz \rightarrow sub-mm for large γ (10⁷) for msec pulsar (B~10⁵ T)

up to IR for pulsars with B~108 T

1.10

• Power dissipated in AW \rightarrow fraction $\varepsilon \sim 10^{-2}$ to 10^{-4} in Radio power

- Flux density (isotropic) : $\left(\frac{\langle S \rangle}{Jy}\right) = 6.5 \left(\frac{\gamma}{10^5}\right)^2 \left(\frac{\epsilon}{10^{-3}}\right) \left(\frac{R_b}{10^7 \text{m}}\right)^2 \left(\frac{1 \text{AU}}{r}\right)^2 \left(\frac{R_*}{10^4 \text{m}}\right) \left(\frac{B_*}{10^5 \text{T}}\right)^2 \left(\frac{10 \text{ms}}{T_*}\right)^2 \left(\frac{Mpc}{D}\right)^2 \left(\frac{1 \text{GHz}}{\Delta f}\right)$
 - → max distance (for S ~ Jy) ≥ 1 Gpc for $\gamma \ge 10^{5-6}$

P_{Radio} ~ 10^{20±2} W ≤ isolated pulsars, but γ² amplification
 (~BL Lac collimated jets, but synchrotron 10⁵ × weaker than CMI)

- FRB rare bursts (statistics TBD cf [Hassal et al., 2013])
- For γ ≥ 10⁵⁻⁶, duration 1-5 msec → P_{orbital} ~ 0.1-1 day
 (>70 pulsar companions known with P_{orbital} ≤ 1 day
 + possible low mass planets & asteroids)
- Consistent with no re-detection within 1.5 hours of FRBs

- PSR J1928+15 : three 30 msec peaks separated by 403 msec, DM = 242 (galactic)
 - → Dormant pulsar accretion from asteroid belt ?
- γ ~ 10³, 1000 km body @ 0.01 AU around a 0.403 sec pulsar
 - \rightarrow δ AW traversed in 1.5 sec = 3 pulsar rotations,
 - 1 intense = *
- 180 mJy @ 10 kpc \rightarrow small asteroid (km size)
 - → limited growth ?

- Spectral range (Δf/f ≥25%)
 - → large radial range (B & γ variation) or very saturated CMI
 - → harmonics → broad spectrum above f_{ce}
 (= LF cutoff) from a localized source
- 1500 (MHz)1450 1400 1400 Koung 1350 H 1300 1250 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Time (sec) 8 20 -200 1375 1275 1475Time (ms) Frequency (MHz) [Spitler et al., 2014] 1494 MHz 1500 1500 ana Ald 1450 150 1450 1369 MHz 1400 Ř 1400 1219 MHz 100 1350 2 1350 1300 1300 50 1250 1250 1200 1200 200 400 600 800 1000 1200 1400 0 600 800 Time (ms) 1000 1200 1400 200 400 msec 110 459 : 478 msec 110 105 burst 105 power along the 100 100 95 E 95 90 90 ********** 85 85 1200 1250 1300 1350 1400 1450 1500 MHz 450 460 500 470 490 480

[based on Thornton et al., 2013]

 FRB 110220 has 100-MHz-wide bright bands
 → P 2

→ B ?

Refutability tests :

- Regular repeatability : 1-5 msec every P_{orbital} (days or more ...)
- Predicted burst for edge on system (e.g. PSR J2222-0137 : sin i = 0.9985±0.0005)
 [Deller et al., 2013]
- LF cutoff, harmonic bands, circular polarization

- \rightarrow if confirmed, explanation of FRBs
 - & unique probes of Pulsar winds, surrounding bodies, γ