Searching for FRBs with the interferometric arrays

Monika Obrocka Prof. Ben Stappers

New and future arrays/problems

What are FRBs and where do they come from?

- 1. How to identify a host galaxy?
- 2. Follow-up observations at different wavelengths?

Current and future arrays offer:

➤ Multibeaming

Can we use multibeaming to identify a source location in real time?

Multibeaming

Important formulas

The *minimum* signal that a *telescope* can distinguish above the random background noise:

 $S_{v} = \beta \frac{T_{sky} \frac{S}{N}}{G\sqrt{n_{p} \tau \Delta v}} [Jy]$

The observed flux density S often follows a power law dependency to the first order:

$$S(v) \propto v^{\alpha}$$

The spectral index is a function of frequency: $\alpha = \frac{\log \overline{S_I}}{\log \frac{v_I}{v_I}}$

Telescope beam shape changes with frequency: $\frac{\lambda}{D}$

LOFAR beam pattern at 150MHz

LOFAR beam pattern at 119MHz

Real time first order identification of position

Introduction

Overlapping beams ratio

Overlapping beams Sensitivity maps

Flux density ratio map (FDR)

Differential spectral index map (DSI)

Matching values from the FDR map

Matching values from the DSI map

Putting it all together

Caveats

- We know the beam shape very well;
- We assume that the bandwidth is flat (no scintillation);
- Transient events are very short (neglect the Earth's movement).

Paper (in preparation)

- Methodology (in detail);
- Results of the simulations for the MUST,
 LOFAR and MeerKAT arrays;
 - Intrinsic spectral index recovery;
 - Position accuracy.

Even more details in PhD dissertation

Additional slides

Example detection (LOFAR)

