Single and binary star population synthesis in the Kepler field

Robert Farmer Ulrich Kolb

Department of Physical Sciences The Open University r.farmer@open.ac.uk

What kind of binaries does Kepler observe?

- Population synthesis
- Kepler Input Catalog (KIC)
 - Why does it matter?
 - How do we reproduce it?
- Results
 - Mass distributions
 - Period distributions
 - Summary

Population Synthesis

- BiSEPS (Binary and Stellar Evolution and Population Synthesis)
- Evolves systems over wide range of initial masses and initial periods from ZAMS to death

- Two component disk structure
- Extinction given by Drimmel et al (2003)

Drimmel et all (2003) A&A 409

Introduction Population Synthesis

- BiSEPS (Binary and Stellar Evolution and Population Synthesis)
- Evolves systems over wide range of initial masses and initial periods from ZAMS to death
- Two component disk structure
- Extinction given by Drimmel et al (2003)
- Constant star formation rate
- Weighted random distribution of objects

Kepler Input Catalog (KIC)

- Ground based
- 5 Band g,r,i,z,D51
- Fits Teff & log g
- Derives mass and radius
- Assumes only single stars!

48-inch Pointings in the Kepler Field of View

Kepler target grouping

- Bandwidth limited
- Target selection, dwarfs vs giants
- Optimize search for Earth size planets in habitable zones
- Categorize into groups, based on:
 - Magnitude of star
 - Minimum detectable planet radius at different orbital separations
 - Number of transits

Method

- Convert magnitudes to Sloan+D51 band passes
- Map Kepler CCD area

Kepler field of view

Method

- Convert magnitudes to Sloan+D51 band passes
- Map Kepler CCD area
- Put our stars through KIC code
 - Use KIC's estimate of mass and radius
- Calculate PRF & FPG

Image: http://keplergo.arc.nasa.gov/CalibrationPSF.shtml

Our synthetic image

Kepler's synthetic image

Bryson et al (2010) APJ 713L

Target selection criteria

$$R_{p,min} = R_s \sqrt{\frac{7.1\sigma}{r}}$$

- $R_{p,min}$ =Minimum detectable planet radius
- R_s =Stellar Radius
- σ =Noise
- *r* =Crowding metric

- Optimal aperture
 - Saturation
 - Poisson noise and CCD noise
 - Number of measurements

Results

Assume binary fraction of 50%

	KIC	Our code, KIC data	Our data
Total Stars	405091	405091	370468
Target Stars	154008	131361	122678
%	~38%	~32%	~33%
# Single Stars			60632
# Binary Stars			62046

Kepler target selection does not alter binary fraction

Single star mass distribution

Mass distribution of star 1

Mass distribution of star 2

Mass ratio

Period distribution

Summary

- Generated a population synthesis model of Kepler's FOV
- Modelled Kepler's CCD structure and target selection criteria
- Kepler target selection preserves binary fraction
- Most binaries are detached MS+MS
- Future plans:
 - Eclipsing Binaries
 - Blending
