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Magnetic tube oscillations (ideal MHD)

History

70’s - 80’s (Defouw, 1976)

Motivated by magnetic field concentrations on the solar surface

Inherently longitudinally stratified

“Thin tube” approximations (Defouw, 1976; Roberts and Webb, 1978):
“Sausage mode”

Roberts and Webb (1979): non-stratified but “thick tube”

Wilson (1979) (+ taut wire mode = kink mode)

Spruit (1981) cut-off frequency for kink-mode

Edwin and Roberts (1983) → Roberts et al. (1984) seminal paper on
coronal seismology

Jesse Andries Stratified fluxtubes



LEUVEN

Tube oscillation models: history
General treatment of stratified but “thick tubes”

On the cut-off frequency
Summary

Tube model

Edwin and Roberts (1983)

exp(ı(mϕ− ωt))

m : azimuthal wave numbers
ω : frequency
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Straight tubes: homogeneous

Homogeneous in z ⇒ ∼ exp(ı(kzz − ωt))

Iconic dispersion relation: Edwin and Roberts (1983)
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Straight tubes: longitudinally stratified

Andries et al. (2005)
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Thin tubes again: β = 0, m = 1 kink mode

(Dymova and Ruderman, 2005)(
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Verth and Erdélyi (2008), Ruderman et al. (2008): expanding field again(
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Relation with Andries et al. (2005)?

Replace longitudinal quantum numbers with longitudinal operators
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Challenge!

Generalize the above operator function solution to:

Include tube expansion

Include pressure effects: β 6= 0

Include gravity: i.e. buoyancy
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Assumptions

Neglect curvature of field lines

Neglect curvature of perpendicular plane

All satisfied as long as:
1

B
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Perpendicular invariance

Separation of variables:

LAB
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Diverging tube

ψ ≈ r(z)2B(z)/2 with the normal and azimuthal scale factors
hψ ≈ 1/r(z)B(z) and hθ = r(z)

Flux coordinates
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Impedances again

Thus formally:
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“thin flux tubes” once more

Small argument expansions in Bessel functions ⇒(
Bin(z)Lin

A + Bex(z)Lex
A

)
ξr (z) = 0 . (9)

Also valid for m > 1!

It is about time to discuss LA in more detail!
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LA
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By flux conservation r2(z)B(z) = C ⇒ hψ ∼ hθ (hψ ≈ 1/r(z)B(z) and
hθ = r(z).)
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“thin flux tubes” for the very last time

Immediately recover Dymova and Ruderman (2006), Ruderman et al. (2008)(
(ρi + ρe)ω2 + 2B2 ∂
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)
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= 0

Also valid for m > 1!
BUT How to reconcile with:
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“thin flux tubes” for the very last time (continued)

Now find:

LA =
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Hence Spruit needs additional approximation: longitudinal variation of
perturbation is faster than that of equilibrium!
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On the cut-off frequency

Spruit (1981)

Remove first order derivative by “integrating factor”
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Klein-Gordon (if isothermal and constant β).
Cut-off frequency is of same order as the terms neglected in LA.
More general treatment clarifies the terms making up the cut off are absent
All kink-modes may propagate upwards!
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Summary

Generalization of tube dispersion relation for stratified tubes

Valid for ‘slowly diverging’ tubes although they are ‘thick’

Recover limiting cases for ‘thin tubes’

In particular the kink mode for which there is NO cut-off for the
isothermal case
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