Solar Orbiter Remote Sensing Instruments

Louise Harra UCL-MSSL <u>Ikh@mssl.ucl.ac.uk</u> & the Solar Orbiter team

ar corona, wind and magnetic activity dynamic heliosphere

e remote sensing instruments

tigation	PI	Countries involved	Measurement	Technique
netric and eismic Imager	S. Solanki (MPS)	D, E, F	Vector magnetic field and line of sight velocity in the photosphere	High resolution telescop axis Ritchey-Chretien, Fu telescope, refractor, Fabr Perot filtergraph.
nager (EUI)	P. Rochus (CSL)	B, <mark>UK</mark> , F, D, CH	Full disk EUV and high resolution EUV and Lyman α imaging of the solar atmosphere	Full Sun imager: dual ban off axis Herschelian, 2 hig resolution imagers, EUV α off axis Ritchey-Cherr
spectrometer ope (STIX)	A. Benz (FHNW)	CH, PL, D, CZ, F	Solar thermal and non-thermal X-ray emission (4-150 keV)	Fourier transform imagin CZT detectors
agraph (METIS)	E.Antonucci (INAF-OATo)	I, D, CZ	Visible, UV and EUV imaging of the solar corona.	Externally occulted coronagraph
pheric Imager II)	R. Howard (NRL)	USA	White light imaging of the extended corona	Wide angle lens with ape stop
al Imaging of the al Environment :)	Consortium lead: A. Fludra	ESA facility instrument F, D, N, CH, <mark>UK</mark>	EUV spectroscopy of the solar disk and low corona	Off axis parabaloid teleso TVLS grating spectrograp

note-sensing Instruments

Sol

SPI

EUI

METIS -

STIX

HI – heliospheric imager

- de-Field Imager of the Heliosphere From 5 to 45 deg From the Sun ble Light Observations
- ple Telescope: No Mechanisms Other Than One-Shot Door
- xt-Generation 4Kx4K APS Sensor

olar Orbiter Heliospheric Imager (SoloHI) verview

- oHI is an evolution of the heliospheric imager developed f ne STEREO SECCHI instrument.
- e field of view of SoloHI is 40 degrees, twice that of SECC
- II-1. At perihelion it will have resolution comparable to ASCO/C2 with the C3 field of view
- a visible-light telescope that images the light scattered from ee electrons in the solar wind plasma
- us it observes solar wind structures streamers or plasmanets, CMEs, density fluctuations, comets, etc.

Spectroscopy

cternally occulted coronagraph designed for:

d-band imaging - polarized VL K-corona ow-band imaging - UV corona (HI Lyα, 1216 Å) ow-band imaging - EUV corona (Hell Lyα, 30.4 Å)

ar FOV: 1.5 - 3.0 R_{\odot} at min perihelion 0.28 AU

ctro-imaging - HI, Hell lines

ronal sector (3 FOV) in UV/ EUV

neous UV, VL coronal images

TIS objectives

characterize the

mics and composition of the major plasma components (e⁻, H, He) ne corona and solar wind acceleration sites

ity/abundance maps H, He, e ow velocity maps of H, He ity distribution of H, He

SIIX ctrometer/Telescope for Imaging X-rays

STIX will play an important role in answering two of Solar Orbiter's main science questions: How and where are energetic particles accelerated at the Sun and how are they transported into interplanetary space?

X-ray images \rightarrow location flare of accelerated electrons X-ray spectra \rightarrow spectrum and intensity of electrons

What is the magnetic connection from Solar Orbiter back to the Sun?

Combined observations with RPW and EPD \rightarrow magnetic structure, field line length and connectivity

FIX plays a key role in linking remote sensing and in-situ bservations on Solar Orbiter

Typic flare s

RHESSI of a

nin design

റ്റ

Cadmium-Telluride detectors \rightarrow energy and timing of incident X-ray

- Wide energy range (4 150 keV)
- High spectral (1-15 keV) and temporal (≥ 0.1 s) resolution
- naging via Fourier technique (similar to Yohkoh HXT and related to R
 - Observes full solar disc at all times
- Flare locator → flare flag for other instruments on Solar Orbiter
 Dwn aspect system to determine absolute pointing and relative poi
 with respect to other Solar Orbiter instruments

will have a higher sensitivity than RHESSI, with compare ge quality and spectral and spatial resolution. It will be

HRI - high Iution imager High Resolution Imager: Lyma Subsec-100s cadence Pixel=100km@ perihelion

> High Resolution Imager: Fe IX/X 17.4 I-100s cadence Pixel=100km@ perihelion **Full Sun Imager:**

Fe IX/X 17.4 & He II:30.4

10-600s cadence

Pixel=860km@ perihelion

ng the sun and miler henosphere

1-02-15 00:08:45 UT

Coronal mass ejection source \equiv EUI FSI

20-Feb-2007 11:18:28 UT EUI is a key instrument for interpreting in-situ data - E captures both the origin of steady solar wind and glob eruptive events.

CE EUV Spectrometer

s 2D high resolution spectra & ral images: 702-792 Å, 972-1050

10'x16' intensities, Doppler **Exposure: 4s** elocities, line width nplete **temperature** coverage om chromosphere to flaring Heat Rejectio **Telescope Assembly** rona Telescope Baffles (3) es maps of **outflow velocities**, M/Q ratio of surface Slit Assembly Dete position features, connecting Inte Dete Heat Dump to solar wind structures rved by in-situ instruments esolution chromospheric and Particle Deflector nal images Grating Assembly +X

Optics: single mirror, toroida

grating

Three slits: $2^{\prime\prime} \times 16^{\prime}$, $4^{\prime\prime} \times 16^{\prime}$,

30"x16'. Maximum raster are

ne SPICE Spectrometer

E will provide detailed plasma diagnostic bility for studies of the solar atmosphere.

ers: Fludra et al: Science Goals of SPICE EUV Spectrometer

na & Mason: Spectral Diagnostics with SPICE

 Stic
 Coronal Mass Ejections onsets early propagation
 Composition of plasma
 Composition of plasma
 An understanding of energet particles – their source and

acceleration

Solar wind origin and accelerate

SPICE Quiet Sun Sunspot H_N H_N H_N H_N H_N H_N H_N H_N H_	lon	λ(Α)	Log Te (K)	
а.Ш. 4.2.33 Ne VIII + 1, 6. III + 2.73 Ne VII + 2,53 Ne VII 6. II + 6.11 S II + 6.1 1. e. VI + 9.50 O Ne VI + 9.50 O Ne VI + 9.50 O Ne VI + 9.50 O	ні	1025	4.0	
75 01+8.65 N 60 He II + 2.683 1 13 Fe III + 4.771 VI + 7.40 Si III SII + 0.85 S II SII + 0.85 S III - 5.79 Ne VI + 0.03 29 Ne VI + 0.03 20 NE	CIII	977	4.5	
4. И Ш Ш + 3.9.1 Fe Ш + 3.9.1 Fe Ш + 5. 2 + 4.26 Fe Ш + 5. 3 1. 7.18 Ne 3. ArV1+0.49.1 1. Fe Ш 2. 1.30 S Ш + 1 1. 7.11 0. Fe Ш + 3.42.1 0. Fe Ш + 3.42.1 1. 1.30 S Ш + 1 1. 1.10 S Ш	OVI	1032	5.5	X
9.91 NIII + 9.8 1.140 Fe 5.84 Fe III 5.84 Fe III 5.84 Fe III 4.600 5.600 5.600 5.600 5.600 5.600 5.600 5.75 Fe III 5.75 5.75 5.75 Fe III 5.75 5.75 5.73 Si III 5.75 5.73 5.74 5.	NeVIII	770	5.8	R
	ΜσΙΧ	706	60	4

First veloci of polar r

e SO/PHI instrument

- sures magnetic vector & line-ofht velocity
- telescopes:
- T as refractor
- RT as oblique reflector
- selection mechanism
- Perot narrow-band filter with NbO₃ etalon(s)
- er important subsystems: larisation modulation. APS

olarimetry and helioseismology on SO will ovide unique science

- ide **B** to EUV imager and spectrometer, all observing at high itial resolution (up to 180 km): linkage science
- decent view of magnetic and velocity field at poles
- w surface and subsurface evolution of solar features (e.g. actigions) without changing viewing angle
- eoscopic helioseismology to better probe the interior
- eoscopy of the photosphere
- surement of the complete field of the Sun (360° view)
- ide magnetic context for Solar Probe plue