Jeremy Tregloan-Reed
Postgraduate Student
Astrophysics Dept.
Keele University
Staffordshire
ST5 5BG, U.K
jtr@astro.keele.ac.uk

OBSERVATION AND MODELLING OF TRANSITS AND STARSPOTS IN THE WASP-19 PLANETARY SYSTEM

P.R.I.S.M (Planetary Retrospective Integrated Spot Model)

Wasp19 data. Obtained from the NTT at La Silla, Chile

- PRISM uses a pixilation approach to model a transiting exoplanet across a surface of an active host star.
- This allows us to model starspots, Limb darkening and gravity darkening.
- Preliminary Results.

$$r_p/r_s$$
 0.1433 +/- 0.0012
 $r_p + r_s$ 0.3235 +/- 0.0025
u1 0.563 +/- 0.058
i 79.45 +/- 0.24

The preliminary results agree with previously published results of the same data.

Hellier et al. 2011 & Anderson et al. 2011

The Trouble with Spots

- Spots on the surface of a star will affect the transit shape/depth.
- Normal methods model the spot based on the residuals after the transit has been modelled.
- This leads to errors in the calculation of the system parameters such as the planetary radius.
- PRISM circumvents this problem by using a pixellation approach.

Preliminary Results

Preliminary Results

Preliminary Results

Preliminary Results Latitudinal Rotation and System Obliquity

- WASP-19b orbital period is 19 hours
- The separation between the spot in each data set is approximately 2% of the orbital phase.
- This means that the spot as travelled 28° in 19 hours and 22 minutes.
- This equates to a rotation period of 10.38 \pm 0.23 Days for the spot's latitudinal band.
- We also find the obliquity of the system to be $\lambda = 0.5^{\circ} \pm 1.3^{\circ}$
- Spectroscopic measurements gave $\lambda = 4.6^{\circ} \pm 5.2^{\circ}$ (Hellier et al., 2011)

