HOMOGENEOUS STUDIES OF TRANSITING PLANETS

John Southworth Advanced Fellow Keele University, UK

Mass versus radius:

planets on the left, host stars on the right

Step 1: model the transit light curve

Fit a simple geometrical model to the data

I use the $_{\rm JKTEBOP}$ code

Light curve of WASP-2 (Southworth et al. 2009)

Step 1: model the transit light curve

Fit a simple geometrical model to the data

I use the JKTEBOP code

Derived parameters:

Light curve of WASP-2 (Southworth et al. 2009)

 $P_{\rm orb}$ $k = r_{\rm b}/r_{\rm A}$ $r_{\rm A} = R_{\rm A}/a$ i

orbital period ratio of planet to star radius fractional radius of star inclination of the orbit

• Light curve: P_{orb} r_A k i

- Light curve: P_{orb} r_A k i
- Radial velocities:
 - stellar velocity amplitude K_A
 - orbital eccentricity e

- Light curve: P_{orb} r_A k i
- Radial velocities:
 - stellar velocity amplitude K_A
 - orbital eccentricity e
- Spectral synthesis: stellar T_{eff} and $\left[\frac{\text{Fe}}{\text{H}}\right]$

- Light curve: P_{orb} r_A k i
- Radial velocities:
 - stellar velocity amplitude $K_{\rm A}$
 - orbital eccentricity e
- Spectral synthesis: stellar T_{eff} and $\left[\frac{\text{Fe}}{\text{H}}\right]$
- Interpolate in stellar models:
 - find best-fitting mass for the star
 - find most likely age for the system

- Light curve: P_{orb} r_A k i
- Radial velocities:
 - stellar velocity amplitude K_A
 - orbital eccentricity e
- Spectral synthesis: stellar $T_{\rm eff}$ and $\left[\frac{\rm Fe}{\rm H}\right]$
- Interpolate in stellar models:
 - find best-fitting mass for the star
 - find most likely age for the system
- Get planet mass and radius
 - \Rightarrow surface gravity \Rightarrow atmosphere studies
 - $\Rightarrow\,$ density $\,\Rightarrow\,$ composition and core size
 - $\Rightarrow\,$ composition and core size $\,\Rightarrow\,$ formation scenario

Homogeneous studies of transiting planets

- Light curve fit: JKTEBOP
 - Limb darkening (five laws)
 - Contaminating light
 - Orbital eccentricity
 - Numerical integration (for long exposure times)
 - Statistical errors (Monte Carlo)
 - Correlated noise in the photometry (residual permutation)

Homogeneous studies of transiting planets

- Light curve fit: JKTEBOP
 - Limb darkening (five laws)
 - Contaminating light
 - Orbital eccentricity
 - Numerical integration (for long exposure times)
 - Statistical errors (Monte Carlo)
 - Correlated noise in the photometry (residual permutation)
- Physical properties from extra constraint:
 - try five different theoretical models
 - also try eclipsing binary relations

Homogeneous studies of transiting planets

- Light curve fit: JKTEBOP
 - Limb darkening (five laws)
 - Contaminating light
 - Orbital eccentricity
 - Numerical integration (for long exposure times)
 - Statistical errors (Monte Carlo)
 - Correlated noise in the photometry (residual permutation)
- Physical properties from extra constraint:
 - try five different theoretical models
 - also try eclipsing binary relations
- Now done 60 transiting systems
- Southworth (2008, 2009, 2010, 2011)
- TEPCat: http://www.astro.keele.ac.uk/~jkt/tepcat/

TEPCat – homogeneous studies

A PRIME THE PARTY OF A PRIME PARTY OF A													
://localhost/home/jkt/w	www/tepcat/ho	mogeneou	s-par-noe	rr.html								Search with Google	f.
TEP	PCat: I	lom	ogen	eous	studie	es ph	ysic	al pro	opert	ies wi	ithout	errorbars	
a physical propertie antities (effective te ical stellar evolution	es measure emperature nary model	d for the , metal at s.	system oundanc	s studied ce, reflex v	in my series velocity ampli	of paper Itude, an	s on the d light cu	Homoger Irve parar	neous stud neters) wi	lies of tran th an extra	asiting extra a constraint	isolar planets. The propert t that the properties of the	les are obtained fr e star agree with tr
cal properties the	use of thes	e theoret	tical mod	dels result	s in a systen	natic unc	ertainty.	In such c	ases two	sets of err	orbars are	given, the first of which is	the statistical erro
MALLENCE PARTY OF FOUR	sere for nec	in muchtin	S/A										
e in machine-reada	ble ASCII for	h quantit ormat	y)										
e in machine-reada e in machine-reada the TEPCat main p	bars for eac ible ASCII fo ible CSV for bage	h quantit ormat mat	(y)										
e in machine-reada e in machine-reada the TEPCat main p	bars for eac ible ASCII fo ible CSV for bage	h quantit mat mat	373										
in machine-reada in machine-reada the TEPCat main p	bars for eac ble ASCII for ble CSV for bage	h quantit prmat mat iteliar pr	y) ropertie	Dansitu	Comin sion	Maga	Plane	etary pro	perties	Equil	Safranav		
in machine-reada e in machine-reada the TEPCat main p	bars for eac ble ASCII for ble CSV for bage Mass (Msun)	h quantit mat itellar pr Radius (Rsun)	ropertie log(g) (cgs)	bensity (ρsun)	Semimajor axis (AU)	Mass (Mjup)	Plane Radius (Rjup)	Gravity (m/s2)	perties Density (ρjup)	Equil temp(K)	Safronov number	Reference	
in machine-reada e in machine-reada the TEPCat main p System CoRoT-1	Association and the second sec	tellar pr Radius (Rsun)	v) ropertic log(g) (cgs) 4.311	Density (psun) 0.660	Semimajor axis (AU) 0.02536	Mass (Mjup) 1.03	Plane Radius (Rjup) 1.551	Gravity (m/s2) 10.65	Density (pjup) 0.259	Equil temp(K) 1915	Safronov number 0.0354	Reference 2011MNRAS.417.21665	
sin machine-reada e in machine-reada e the TEPCat main p System CoRoT-1 CoRoT-2	Mass (Msun) 0.95 1.018	tellar pr Radius (Rsun) 1.131 0.907	y) ropertie log(g) (cgs) 4.311 4.530	Density (psun) 0.660 1.362	Semimajor axis (AU) 0.02536 0.02854	Mass (Mjup) 1.03 3.62	Plane Radius (Rjup) 1.551 1.470	Gravity (m/s2) 10.65 41.5	Density (pjup) 0.259 1.066	Equil temp(K) 1915 1548	Safronov number 0.0354 0.1381	Reference 2011MNRAS.417.21665 2011MNRAS.417.21665	
System CoRoT-1 CoRoT-2 CoRoT-1 CoRoT-3	Mass (Msun) 0.95 1.018 1.403	h quantit rmat iteliar pr Radius (Rsun) 1.131 0.907 1.575	y) ropertic log(g) (cgs) 4.311 4.530 4.191	Density (psun) 0.660 1.362 0.359	Semimajor axis (AU) 0.02536 0.02854 0.05783	Mass (Mjup) 1.03 3.62 21.96	Plane Radius (Rjup) 1.551 1.470 1.037	Gravity (m/s2) 10.65 41.5 506	Density (pjup) 0.259 1.066 18.4	Equil temp(K) 1915 1548 1695	Safronov number 0.0354 0.1381 1.74	Reference 2011MNRAS.417.21665 2011MNRAS.417.21665 2011MNRAS.417.21665	
System CoRoT-1 CoRoT-2 CoRoT-3 CoRoT-4	Ars for eacher of the ASCII for eacher of the ASCII for ball of the ASCII for eacher of th	tellar pr Radius (Rsun) 1.131 0.907 1.575 1.148	y) opertie log(g) (cgs) 4.311 4.530 4.191 4.396	Density (psun) 0.660 1.362 0.359 0.790	Semimajor axis (AU) 0.02536 0.02854 0.05783 0.09120	Mass (Mjup) 1.03 3.62 21.96 0.731	Plane Radius (Rjup) 1.551 1.470 1.037 1.160	Gravity (m/s2) 10.65 41.5 506 13.5	Density (pjup) 0.259 1.066 18.4 0.4378	Equil temp(K) 1915 1548 1695 1058	Safronov number 0.0354 0.1381 1.74 0.0962	Reference 2011MINRAS.417.2166S 2011MINRAS.417.2166S 2011MINRAS.417.2166S 2011MINRAS.417.2166S	
se includes erfort in machine-reada in machine-reada it methine-reada the TEPCat main ; System CoROT-1 COROT-2 COROT-3 COROT-4 COROT-5	Ars for each ble ASCII for each ble ASCII for each ble ASCII for ble CSV for bage and the control of the contro	h quantit prmat itellar pr Radius (Rsun) 1.131 0.907 1.575 1.148 1.052	y) opertie log(g) (cgs) 4.311 4.530 4.191 4.396 4.405	Density (ρsun) 0.660 1.362 0.359 0.790 0.88	Semimajor axis (AU) 0.02536 0.02854 0.05783 0.09120 0.05004	Mass (Mjup) 1.03 3.62 21.96 0.731 0.469	Plane Radius (Rjup) 1.551 1.470 1.037 1.160 1.182	Cravity (m/s2) 10.65 41.5 506 13.5 8.3	Density (pjup) 0.259 1.066 18.4 0.4378 0.2659	Equil temp(K) 1915 1548 1695 1058 1348	Safronov number 0.0354 0.1381 1.74 0.0962 0.0388	Reference 2011MNR45,417,21665 2011MNR45,417,21665 2011MNR45,417,21665 2011MNR45,417,21665 2011MNR45,417,21665	
System CoRoT-1 CoRoT-2 CoRoT-3 CoRoT-5 CoRoT-6	Ars for each ble ASCII for ble CSV for bage Mass (Msun) 0,95 1.018 1.403 1.194 1.025	h quantit mat iteliar pr Radius (Rsun) 1.131 0.907 1.575 1.148 1.052 1.043	y) opertie log(g) (cgs) 4.311 4.530 4.191 4.396 4.405 4.425	Density (ρsun) 0.660 1.362 0.359 0.790 0.88 0.929	Semimajor axis (AU) 0.02536 0.02854 0.05783 0.09120 0.05004 0.0855	Mass (Mjup) 1.03 3.62 21.96 0.731 0.469 2.96	Plane Radius (Rjup) 1.551 1.470 1.037 1.160 1.182 1.185	Stary pro Gravity (m/s2) 10.65 41.5 506 13.5 8.3 52.3	Density (pjup) 0.259 1.066 18.4 0.4378 0.2659 1.66	Equil temp(K) 1915 1548 1695 1058 1348 1025	Safronov number 0.0354 0.1381 1.74 0.0962 0.0388 0.405	Reference 2011MNRAS.417.21665 2011MNRAS.417.21665 2011MNRAS.417.21665 2011MNRAS.417.21665 2011MNRAS.417.21665	
System CoRoT-1 CoRoT-1 CoRoT-2 CoRoT-3 CoRoT-4 CoRoT-4 CoRoT-6 CoRoT-6 CoRoT-7	Ars for each ble ASCII for ble CSV for ble CSV for age Mass (Msun) 0.95 1.018 1.403 1.194 1.025 1.054	h quantit mat iteliar pr Radius (Rsun) 1.131 0.907 1.575 1.148 1.052 1.043 0.96	y) ropertie log(g) (cgs) 4.311 4.530 4.191 4.396 4.405 4.425 4.42	Density (psun) 0.660 1.362 0.359 0.790 0.88 0.929 1.00	Semimajor axis (AU) 0.02536 0.02854 0.05783 0.09120 0.05004 0.0855 0.01690	Mass (Mjup) 1.03 3.62 21.96 0.731 0.469 2.96 0.0220	Plane Radius (Rjup) 1.551 1.470 1.037 1.160 1.182 1.185 0.166	Stary pro Gravity (m/s2) 10.65 41.5 506 13.5 8.3 52.3 19	Density (pjup) 0,259 1.066 18.4 0.4378 0.2659 1.66 4.5	Equil temp(K) 1915 1548 1695 1058 1348 1025 1910	Safronov number 0.0354 0.1381 1.74 0.0962 0.0388 0.405 0.0051	Reference 2011MNRA5.417.21665 2011MNRA5.417.21665 2011MNRA5.417.21665 2011MNRA5.417.21665 2011MNRA5.417.21665 2011MNRA5.417.21665	
System CoCools erfor: System CoRoT-1 CoRoT-2 CoRoT-3 CoRoT-4 CoRoT-5 CoRoT-5 CoRoT-6 CoRoT-7 CoRoT-7 CoRoT-8	Ars for each ble ASCII for ble CSV for ble CSV for age (Msun) 0.95 1.018 1.403 1.194 1.025 1.054 0.884 0.878	h quantit mat tellar pr Radius (Rsun) 1.131 0.907 1.575 1.148 1.052 1.043 0.96 0.898	y) log(g) (cgs) 4.311 4.530 4.191 4.396 4.405 4.425 4.42 4.475	Density (psun) 0.6600 1.362 0.359 0.790 0.88 0.929 1.00 1.21	Semimajor axis (AU) 0.02536 0.02854 0.05783 0.05783 0.05004 0.05004 0.0855 0.01690 0.0633	Mass (Mjup) 1.03 3.62 21.96 0.731 0.469 2.96 0.0220 0.216	Plane Radius (Rjup) 1.551 1.470 1.037 1.160 1.182 1.185 0.166 0.712	Stary pro Gravity (m/s2) 10.65 41.5 506 13.5 8.3 52.3 19 10.65	Density (pjup) 0.259 1.066 18.4 0.4378 0.2659 1.66 4.5 0.56	Equil temp(K) 1915 1548 1695 1058 1348 1025 1349 1922	Safronov number 0.0354 0.1381 1.74 0.0962 0.0388 0.0405 0.0051 0.00437	Reference 2011MNRA5,417,21665 2011MNRA5,417,21665 2011MNRA5,417,21665 2011MNRA5,417,21665 2011MNRA5,417,21665 2011MNRA5,417,21665	

TEPCat – all transiting planets

O TEPCat: Physical properties of transiting planets (without errorbars) - Opera U Opera P The Eclipsing Binar... x TEPCat: Physical p... x D John Southworth's ... x D Transiting extrasol... x - file://localhost/home/ikt/www/tepcat/allplanets-noerr.html Search with Google TEPCat: Physical properties of transiting planets without errorbars This table contains a summary of the physical properties for all known transiting extrasolar planetary systems, I include those systems for which a detailed study has been published in a refereed journal or on the arXiv preprint server. Most systems have been studied multiple times, so for these I select what I consider to be the best measurements. By necessity the results for many of the planetary systems have been assembled from multiple papers, so are not guaranteed to be internally consistent. I give a reference to the discovery paper and the paper from which most of the results were taken for each system. Click here for details of the quantities and their units Click here for a full table (includes errorbars for each quantity) Click here for the table in machine-readable CSV format Click here to return to the TEPCat main page Stellar properties Planetary properties Orbital Eccen-Semimir Teff [Fe/H] Mass Radius log(g) Density Mass Radius Gravity Density Equil Discovery Main recent (Msun) (Rsun) (cgs) System period tricity axis (AU) (K) (dex) (osun) (Miup) (Riup) (m/s2) (piup) temp reference reference 0.01564 5196 +0.31 0.02536 2008A+A...482L..178 0.02854 5696 1.018 0.907 1.362 41.5 1.066 1548 2008A+A 4821 21A 21.96 8.887 0.0855 2.96 0.884 19 0.0633 5080 . . .

TEPCat – observable quantities

THE FEMALENCE INCOME.	design of the	and the second second second	carine in the second second	Search with Google					
- magnocalitose	,лютте/јкс	www.repcat/oos	ervapres.html		Search with Google				
		TEP	Cat: Ba	sic o	bserva	able p	properties of tra	nsiting planets	
		aptition all loos	un (nublicher	() trancit	log ovtragel		The questilles comprise the s	or position (19000) \/ magnit	ude latest orbital ophome
nd depth. Trar	nsiting p	lanets are der	noted with a "T	EP" and	transiting br	own dwar	'fs with a "BD". The transit dept	th is only approximate as it v	aries with wavelength.
ransit are tak	en from	published stu	udies, which u	se a ran	ge of differe	nt time co	nventions (and do not always o	learly state which). The most	t common is HJD(UTC), bu
3) are also re	gularly u	used. The diffe	erence betwee	n HJD ar	nd BJD is only	y a few se	conds, but the offset between	UTC and TDB is currently 66	.186s. A good explanation
2010-451	22	., ii precise c	inings are nee	eueu ine	ar you should	a releficon	une reference givernin che finar	column of the table below.	
ils of the qua	ntities a	nd their units							
table in mach	ine-read	able ASCII for	mat						
cable in mach	ine-read	able CSV forn	nat						
n to the TEPC	Cat main	page							
in to the TEP(Cat main	page							
n to the TEP(Cat main	page							
n to the TEP	Cat main	Right	Declination		Transit	Transit	Time of mid typesit	Outside Leavier (d)	Ephemeris
System	Type	Right ascension	Declination	V mag	Transit length (d)	Transit depth	Time of mid-transit	Orbital period (d)	Ephemeris reference
System	Type TEP	Right ascension 08 52 36.13	Declination +28 19 53.0	V mag	Transit length (d) 0.0734	Transit depth	Time of mid-transit 2455733.0087 ± 0.0012	Orbital period (d) 0.7365449 ± 0.0000048	Ephemeris reference 20124+A539A28G
System 55 Cnc e CoRoT-1	Type TEP TEP	Right ascension 08 52 36.13 06 48 19.17	Declination +28 19 53.0 -03 06 07.8	V mag 5.95 13.6	Transit length (d) 0.0734 0.10439	Transit depth 0.045 % 2.3 %	Time of mid-transit 2455733.0087 ± 0.0012 2454524.6231 ± 0.0002	Orbital period (d) 0.7365449 ± 0.0000048 1.5089686 ± 0.0000012	Ephemeris reference 2012A+A539A28G 2009A+A506359G
System 55 Cnc e CoRoT-1 CoRoT-2	Type TEP TEP TEP	Right ascension 08 52 36.13 06 48 19.17 19 27 06.50	Declination +28 19 53.0 -03 06 07.8 +01 23 01.4	V mag 5.95 13.6 12.57	Transit length (d) 0.0734 0.10439 0.09446	Transit depth 0.045 % 2.3 % 3.2 %	Time of mid-transit 2455733.0087 ± 0.0012 2454524.6231 ± 0.0002 2454237.53556 ± 0.00021 245428 ± 0.00021	Orbital period (d) 0.7365449 ± 0.0000048 1.5089686 ± 0.000006 1.742935 ± 0.0000010 4.3567044 ± 0.0000035	Ephemeris reference 2012A+A539A.28G 2000A+A506.359G 2010A+A511A3G 2000A+A512A3G
System S5 Cnc e CoRoT-1 CoRoT-2 CoRoT-3 CoRoT-4	Type TEP TEP TEP BD	Right ascension 08 52 36.13 06 48 19.17 19 27 06.50 19 28 13.27 06 48 72	Declination +28 19 53.0 -03 06 07.8 +01 23 01.4 +00 07 18.0 -00 40 23.0	V mag 5.95 13.6 12.57 13.29	Transit length (d) 0.0734 0.10439 0.09446 0.153	Transit depth 0.045 % 2.3 % 3.2 % 0.25 % 1.2 %	Time of mid-transit 2455733.0087 ± 0.0012 2454524.6231 ± 0.0002 2454237.53556 ± 0.00021 2454238.13388 ± 0.00024 2454143.641 ± 0.00024	Orbital period (d) 0.7365449 ± 0.0000048 1.5089686 ± 0.0000006 1.7429935 ± 0.0000010 4.2567994 ± 0.0000035 0.20056 ± 0.00023	Ephemeris reference 2012A+A539A28G 2009A+A506359G 2010A+A511A3G 2009A+A5063777
System 55 Cnc e CoRoT-1 CoRoT-2 CoRoT-3 CoRoT-4	Type TEP TEP TEP BD TEP BD	Right ascension 08 52 36.13 06 48 19.17 19 27 06.50 19 28 13.27 06 48 46.72 06 48 46.72	Declination +28 19 53.0 -03 06 07.8 +01 23 01.4 +00 07 18.6 -00 40 22.0	V mag 5.95 13.6 12.57 13.29 14.0	Transit length (d) 0.0734 0.10439 0.09446 0.153 0.184 0.137	Transit depth 0.045 % 2.3 % 3.2 % 0.25 % 1.3 %	Time of mid-transit 2455733.0087 ± 0.0012 2454524.6231 ± 0.0002 2454237.5355 ± 0.00021 2454238.13388 ± 0.00024 2454141.35416 ± 0.00059	Orbital period (d) 0.7365449 ± 0.0000048 1.508668 ± 0.000010 1.7429935 ± 0.000010 4.2567994 ± 0.0000035 9.20205 ± 0.00037 4.07376262 ± 0.00037	Ephemeris reference 2012A+A539A.28G 2009A+A506359G 2010A+A511A33G 2009A+A438A 2009A+A438A 2020A+A438A
System 55 Chc e CoRoT-1 CoRoT-2 CoRoT-2 CoRoT-3 CoRoT-4 CoRoT-5 CoRoT-5	Type TEP TEP TEP TEP BD TEP TEP	Right ascension 08 52 36.13 06 48 19.17 19 27 06.50 19 28 13.27 06 48 46.72 06 45 06.54 06 45 06.54	Declination +28 19 53.0 -03 06 07.8 +01 23 01.4 +00 07 18.6 -00 40 22.0 +00 48 54.9	V mag 5.95 13.6 12.57 13.29 14.0 14.0	Transit length (d) 0.0734 0.10439 0.09446 0.153 0.184 0.117 0.137	Transit depth 0.045 % 2.3 % 3.2 % 0.25 % 1.3 % 1.4 %	Time of mid-transit 2455733.0087 ± 0.0012 2454524.6231 ± 0.0002 2454237.53555 ± 0.00021 2454283.13388 ± 0.00024 2454141.36416 ± 0.00009 24541441.36416 ± 0.00009	Orbital period (d) 0.7365449 ± 0.0000048 1.5096866 ± 0.0000016 1.7429935 ± 0.000010 4.2567994 ± 0.000035 9.20205 ± 0.00037 4.0379962 ± 0.000019	Ephemeris reference 2012A+A.,539A.28G 2009A+A.,505,3570 2009A+A.,505,3777 2008A+A.,488L,43A 2009A+A.,505,281R
System 55 Cnc e CoRoT-1 CoRoT-2 CoRoT-3 CoRoT-4 CoRoT-5 CoRoT-6	Type TEP TEP TEP BD TEP BD TEP TEP	Right ascension 08 52 36.13 06 48 19.17 19 27 06.50 19 28 13.27 06 48 46.72 06 45 06.54 18 44 17.40 06 42 07.07	Declination +28 19 53.0 -03 06 07.8 +01 23 01.4 +00 07 18.6 -00 40 22.0 +00 48 54.9 +06 39 47.4	V mag 5.95 13.6 12.57 13.29 14.0 14.0 13.91	Transit length (d) 0.0734 0.10439 0.09446 0.153 0.184 0.117 0.170	Transit 0.045 % 2.3 % 3.2 % 0.25 % 1.3 % 1.4 % 1.5 %	Time of mid-transit 2455733.0087 ± 0.0012 2454237.53556 ± 0.0002 2454237.53556 ± 0.00021 2454283.13388 ± 0.00024 2454414.136415 ± 0.00002 2454400.18685 ± 0.00002 2454595.6144 ± 0.0002	Orbital period (d) 0.7365449 ± 0.000048 1.5089668 ± 0.000006 1.7429935 ± 0.000035 9.20205 ± 0.00037 4.0378962 ± 0.000037 8.886593 ± 0.00004 9.00205 ± 0.000019	Ephemeris reference 2012A+A59A28G 2009A+A506359G 2000A+A51A3G 2009A+A5059771 2008A+A40843A 2009A+A502218 2009A+A502218
System 55 Cnc e CoRoT-1 CoRoT-2 CoRoT-2 CoRoT-3 CoRoT-4 CoRoT-5 CoRoT-6 CoRoT-7 CoRoT-7	Type TEP TEP TEP BD TEP BD TEP TEP TEP TEP	Right ascension 08 52 36.13 06 48 19.17 19 27 06.50 19 28 13.27 06 48 46.72 06 45 06.54 18 44 17.40 06 43 49.47 19 32 3.24	Declination +28 19 53.0 -03 06 07.8 +01 23 01.4 +00 07 18.6 -00 40 22.0 +00 48 54.9 +06 39 47.4 -01 03 46.9	V mag 5.95 13.6 12.57 13.29 14.0 14.0 13.91 11.72	Transit length (d) 0.0734 0.10439 0.09446 0.153 0.184 0.117 0.170 0.0469 0.034	Transit depth 0.045 % 2.3 % 3.2 % 0.25 % 1.3 % 1.4 % 0.034 % 0.7 %	Time of mid-transit 2455733 0087 ± 0.0012 2454224 6231 ± 0.0002 2454297 35355 ± 0.00021 2454281 3454 ± 0.00029 2454280 (19885 ± 0.00029 24545495 0.144 ± 0.0002 2454599 0.009 ± 0.0015	Orbital period (d) 0.7365449 ± 0.000048 1.5089685 ± 0.000006 1.7429935 ± 0.000010 4.2557934 ± 0.000035 9.20205 ± 0.000037 9.20205 ± 0.000037 8.886593 ± 0.00004 0.853590 ± 0.00004 0.853590 ± 0.00005	Ephemeris reference 2012A+A539A286 2009A+A506359G 2010A+A511A36 2009A+A5063777 2008A+A488L43A 2009A+A506281R 2010A+A524147 2010A+A512A147
System 55 Cnc e CoRoT-1 CoRoT-2 CoRoT-2 CoRoT-3 CoRoT-4 CoRoT-5 CoRoT-6 CoRoT-6 CoRoT-7 CoROT-7 COROT-7 COR	Type TEP TEP TEP BD TEP BD TEP TEP TEP TEP	Right ascension 08 52 36.13 06 48 19.17 19 27 06.50 19 28 13.27 06 48 46.72 06 48 46.72 06 43 06.54 18 44 17.40 06 43 49.47 19 26 21.24	Declination +28 19 53.0 -03 06 07.8 +01 23 01.4 +00 07 18.6 -004 0 22.0 +00 39 47.4 -01 03 46.9 +01 25 35.2 -02 12 55.2	V mag 5.95 13.6 12.57 13.29 14.0 14.0 14.0 13.91 11.72 14.76	Transit length (d) 0.0734 0.10439 0.09446 0.153 0.184 0.117 0.170 0.0469 0.114 0.237	Transit depth 0.045 % 2.3 % 3.2 % 0.25 % 1.3 % 1.4 % 1.5 % 0.034 % 0.7 %	Time of mid-transit 2455733 0087 ± 0.0012 245424 6231 ± 0.0002 245424 6231 ± 0.0002 245424 35456 ± 0.00021 24544303 13388 ± 0.00024 24544400 1985 ± 0.0002 2454595 6144 ± 0.0002 2454593 0540 ± 0.0015 2454293 0591 ± 0.0015	Orbital period (d) 0.7365449 ± 0.000048 1.5006968 ± 0.000010 4.2567964 ± 0.000010 4.2567964 ± 0.000010 9.20205 ± 0.00021 8.866593 ± 0.00001 0.653590 ± 0.00000 6.212381 ± 0.00005	Ephemeris reference 20124+A., 594,286 20094+A.,506,3506 20094+A.,506,3777 20084+A.,488L,43A 20094+A.,505,2818 20104+A.,512A.,14F 201240,1-748,181F 201240,1-748,181F 201240,1-748,181F
System 55 CnC e CoRoT-1 CoRoT-2 CoRoT-3 COROT-4 COROT-4 COROT-4 COROT-5 COROT-6 20RoT-7 ZOROT-8 ZOROT-9	Type TEP TEP TEP TEP TEP TEP TEP TEP TEP TEP	Right ascension 08 52 36.13 06 48 19.17 19 27 06.50 19 28 13.27 06 48 46.72 06 48 50.654 18 44 17.40 06 43 94.97 19 26 21.24 18 43 08.81	Declination +28 19 53.0 -03 06 07.8 +01 23 01.4 +00 07 18.6 -00 40 22.0 +06 39 47.4 -01 03 46.9 +01 25 35.2 +06 12 15.2	V mag 5.95 13.6 12.57 13.29 14.0 14.0 13.91 11.72 14.76 13.69	Transit length (d) 0.0734 0.10439 0.09446 0.153 0.184 0.117 0.0469 0.114 0.337	Transit 0.045 % 2.3 % 3.2 % 0.25 % 1.3 % 1.4 % 1.5 % 0.034 % 0.7 % 1.6 %	Time of mid-transit 2455733 0087 ± 0.0012 2454297.33556 ± 0.0002 2454297.33556 ± 0.0002 2454293.13840 ± 0.0002 2454403 1.9685 ± 0.0002 2454545 0.144 ± 0.0002 2454599.0709 ± 0.0015 2454293 0.3447 ± 0.0001	Orbital period (d) 0.7355449 ± 0.000048 1.5069685 ± 0.000016 1.7429953 ± 0.000015 2.42557944 ± 0.000037 4.0378962 ± 0.000031 8.886593 ± 0.00004 0.835590 ± 0.00004 0.633590 ± 0.00004 0.623281 ± 0.000037 95.2738 ± 0.00014	Ephemeris reference 2012A+A.,554,356 2009A+A.,514A,350 2009A+A.,506,3777 2009A+A.,488,33A 2009A+A.,488,33A 2009A+A.,488,34 2009A+A.,512A,14F 2012A+A.,512A,14F 2012A+A.,512A,14F 2012A+A.,512A,14F 2012A+A.,512A,14F 2012A+A.,512A,14F 2012A+A.,512A,14F 2012A+A.,512A,14F 2012A+A.,512A,14F 2012A+A.,512A,14F 2012A+A.,512A,14F 2012A+A.,512A,14F 2012A+A.,512A,14F 2012A+A.,512A,14F 2012A+A.,512A,14F 2012A+A.,514A,172A+A.,514A,174A,174A,174A,174A,174A,174A,174A,1

TEPCat – Rossiter-McLaughlin

0 • TEPCat: Rossiter-McLaughlin effect observations of transiting planets	Opera			_ 0 ×
Opera The Eclipsing Binar × TEPCat: Rossiter-M × Dohn	Southworth's	× Transiting extrasol ×	3	(X)
+ -> 2 File://localhost/home/jkt/www/tepcat/rossiter.html				Search with Google
TEPCat: Rossit	er-McL	aughlin effect.	observations of tra	nsiting planets
This table catalogues the Rossiter-McLaughlin effects measur measurements) but can be obtained photometrically, by anal	ed for knowr ysis of starsp	n (published) transiting extr lot crossing events during	asolar planets. This effect is normally o transits.	bserved spectroscopically (usually via radial velocity
All known Rossiter-McLaughlin measurements are included. N but it is worthwhile checking the literature to be sure.	lany systems	s have multiple measureme	nts, often resulting from the same data	. In these cases the most recent is normally the most reliable
The Rossiter-McLaughlin effect was originally predicted by Ho was subsequently described and clearly demonstrated by Ro	lt (1893) and ssiter (1924)	i observed (but not definitiv for β Lyrae and McLaughin	ely) in the eclipsing binary star systems (1924) for $β$ Persei. The designation "P	s & Librae (Schlesinger 1910) and \ Tauri (Schlesinger 1916). It iossiter-McLaughlin effect" arose from the latter two papers.
Click here for details of the quantities and their units Click here for the table in machine-readable ASCII format Click here for the table in machine-readable CSV format Click here to return to the TEPCat main page				
	System	λ (degrees)	Reference	
	CoRoT-1	77 ± 11	Pont et al. (2010)	
	CoRoT-2	7.2 ± 4.5 4.0 + 6.1 - 5.9	Bouchy et al. (2008) Gillon et al. (2010)	
	CoRoT-3	37.6 + 10.0 - 22.3	Triaud et al. (2009)	
		prograde	Gandolfi et al. (2010)	
	CoRoT-18	-10 ± 20	Hébrard et al. (2011)	
		-52 + 27 - 22	Guenther et al. (2011)	
	HAT-P-1	3.7 ± 2.1	Johnson et al. (2008)	
	HAT-P-2	1.2 ± 13.4 $0.2 \pm 12.2 \pm 12.5$	Winn et al. (2007) Loeilet et al. (2008)	
	HAT-P-4	-4.9 ± 11.9	Winn et al. (2011)	0