Heating of braided coronal loops

David Pontin, Antonia Wilmot-Smith, Gunnar Hornig (University of Dundee)

> Anthony Yeates (University of Durham)

Aim: investigate how the pattern of braiding by photospheric footpoint motions affects heating of coronal loops

The model magnetic fields

								4 T									
								•									
								3 -									
							у	2 -									
								-					•				
·								1 -									
·						٠				•	·						
. •				•													
	_	_	_	_	_					-							 _
-4		-3 ·		-2		-1	'	0			1.		2			3	4
-4	· ·	-3		-2	-	- 1		0			1.		2 .x			3	4
-4	· ·,	-3 ·		-2		-1		0 - 1 -			1	•	2 .x			3	4
-4	· ·	-3 .		-2		-1		-1 -			1	•	2 x			3	4
-4	· ·,	-3 .		-2		-1		0 -1 - -2 -			1 [.]	•	2 x				4
-4	· · ·	-3 .		-2		-1		0 -1 - -2 -			1	•	2 x				4
-4	· · ·	-3 .		-2		-1		-1 - -2 -			1	•	2 .x		-		
-'4	· · ·	-3	- - -	-2		-1		-1 - -2 - -3 -			1	•	2 .x	- -			
-'4	· · ·	-3 .	·	-2		-1		-1 - -2 - -3 -	-		1	•	.2 .x	· ·			-4

Achieved in practice by adding regions of twist to uniform B

-12

Aspect ratio of loops is $\approx 1:10$

Conservative approach: free energy only 3% above potential

Simulation setup

- Take field E3 or S3 and first perform an <u>ideal</u> relaxation
- Then transfer to resistive MHD code: *J*×<u>B</u>≈0, and initialise with a uniform background plasma

20

15

10

5

0

-5

-10

-15

-20

-5

5

0

- Following an initial instability current peaks sharply in both cases
- Peak current falls off quickly for S3
- Magnetic field 'unbraids'. E.g. E3 -

Energy / heating

- To investigate heating, make an appropriate dimensionalisation
- Parameters:
 - **★** B=10G
 - * n=10¹⁵ m⁻³
 - * L=I Mm
 - $* T=2.3 \times 10^{6} K$
 - * Loop dimensions: 6×6×48 Mm

 $* t_0 = 1.45s$

Energy / heating

- Approx twice as much energy released for E3
- More spatially homogeneous heating for E3
- Temperature rise is modest, but so is initial free energy

Structure of final magnetic field

Plots: mean value of $J \cdot B/B \cdot B$ along field lines

Reynolds number comparison for E3

|]| at z=0

η=10-3

Summary

- Resistive relaxation: <u>B</u> field is unbraided (E3) / untwisted (S3). Involves reconnection at multiple <u>J</u> sheets.
- Although "amount" of photospheric driving in the same, relaxation is more efficient for E3:
 - * Current sheets fill the volume more effectively
 - * More energy is released
 - * Homogeneous heating of the loop
- In other words, <u>amount and distribution</u> of energy release dependent on <u>pattern</u> of driving flow.
- This can be measured by computing the "topological entropy" of the photospheric flow
- Energy release constrained by structure of <u>B</u> (periodic orbits)

Thanks for listening

References:

- Wilmot-Smith, A.L., Pontin, D.I., Yeates, A.R. and Hornig, G. Heating of braided coronal loops, A&A, 536, A67 (2011)
- Pontin, D.I., Wilmot-Smith, A.L., Hornig, G., Galsgaard, K., Dynamics of Braided Coronal Loops - II. Cascade to multiple small scale events, A&A, 525, A57 (2011)
- Yeates, A.R., Hornig, G. and Wilmot-Smith, A.L. Topological Constraints on Magnetic Relaxation, Phys. Rev. Lett., 105, 085002 (2010)
- Wilmot-Smith, A.L., Pontin, D.I., Hornig, G., Dynamics of Braided Coronal Loops
 I. Loss of Equilibrium, A&A, 516, A5 (2010)