UWISH2

H2 Outflows in Serpens and Aquila from UWISH2

Georgios Ioannidis Dirk Froebrich

CENTRE FOR ASTROPHYSICS AND. University of PLANETARY SCIENCE (CAPS)

• UWISH2 - Scientific objectives

-

- Covered Area
- Outflow distribution
- Distance calculation
- Results
- Work in progress
- Future work

UKIRT Widefield Infrared Survey

4

for H2

7° < | < 65° ; -1.5° < b < +1.5°

SCIENTIFIC OBJECTIVES

- Characterise the dynamic component of star formation along a large fraction of the Galactic Plane in an unbiased manner.
- Determine the duration of the jet/outflow phase in YSO evolution (fraction of sources with jets/outflows).
- Determine the star formation rate along the Galactic Plane.
- How do jet/outflow properties (length, opening angle, power) relate to the source properties (mass, luminosity, age, accretion rates) and/or parental cloud (mass, structure) and/or mode of star formation (isolated/clustered)?

UWISH2

A

IAU (1958) galactic coordinates; gnomonic projection

Froebrich et al. (2011) Ioannidis & Froebrich (2012)

UWISH2 ~ 180 square degrees SEARCHED AREA ~ 33 square degrees

OUTFLOWS ON GPS AV MAP

Ioannidis & Froebrich (2012)

SOURCES OF OUTFLOWS

Flux distribution

Ioannidis & Froebrich (2012)

DISTANCE CALCULATION

Measure density of foreground stars. Besancon Galaxy model (Robin at al. 2003). Calibration with RMS sources (Urquhart et al. 2008)

DISTANCE DISTRIBUTION

DISTANCE TO THE GALACTIC PLANE

Scale height 30 pc

LENGTHS

Exponential relationship between N and length

 $N \propto 6^{-length(pc)}$

LENGTHS MODELLING

Variables:

- Velocity (0 150 km/s)
- Age (1000 30000 yrs)
- Inclination

Best fitting models:

4

40 km/s – 130 km/s 4000 yrs – 20000 yrs 20 degrees – 90 degrees

Young/old and very slow objects are not common in our sample.

LUMINOSITY

 $N \propto L_{1-0S(1)}^{-1.9 \pm 0.1}$

OUTFLOW LUMINOSITY FUNCTIONS

 $N \propto L_{1-0S(1)}^{-1.9\pm0.1}$

 $\log(L_{H2}) = 0.58 * \log(L_{bol}) - 1.4$

(Caratti o Garatti et al., 2006)

 $\dot{M} \propto M^{1.3 \pm 0.2}$

Rules out mass independent average mass accretion rate

STAR FORMATION RATE

H2 Luminosities range : 0.01 – 1.0 Solar luminosities

i.e. low - intermediate mass protostars

 $A_k = 1 \text{mag} \rightarrow L_{H2} = 25 L_o \rightarrow L_{acc} = 6 \times 10^4 L_o$

objects accrete onto 1Mo stars of 1.5Ro (Hosokawa et al., 2011)

$$\dot{M} = 0.75 \, x \, 10^{-3} \, M_o \, yr^{-1} \, kpc^{-2}$$

 $\dot{M}_{G} = 5 M_{o} yr^{-1}$

WORK IN PROGRESS

WORK IN PROGRESS

4

- Fraction of sources with jets/outflows duration of the jet/outflow phase in YSO evolution.
- Source properties (mass, luminosity, age, accretion rates).
- How jet properties relate to source properties?

FUTURE WORK

- Cloud properties (mass, structure)
- Associate outflows with cloud cores what percentage of

clouds show active forming areas

• Is the star formation isolated or clustered?

FUTURE WORK

4

EXTEND THIS WORK TO

THE ENTIRE UWISH2 SURVEY