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1. The physics problem

The crust of a neutron star (NS) makes up only a small portion of the mass of
the star. Furthermore, the ratio between the shear modulus and compression
modulus is much smaller than unity [1] in the outer crust, so the effect of
shear stress will be small compared to the effect of pressure in those regions.
However, the interaction between the crust and the fluid core can introduce
modes that are qualitatively different from pure fluid modes. In addition,
because the shear stresses are weak, the crustal and interfacial modes have
lower frequencies than the purely fluid modes; this means that resonance with
tidal forcing can be reached some time before merger (as in the mechanism
proposed by Tsang et al. for precursors prior to short-hard gamma-ray bursts
[2]). The solid crust is also important in the starquake models for pulsar
glitches [3] and gamma-ray bursts [4].

While some models appear to be based on the assumption that starquakes
will occur in a manner similar to earthquakes (ie. [4]), with cracks forming
and techtonic plates sliding against one another, recent molecular dynamics
simulations by Horowitz and Kadau [5] and by Chugunov and Horowitz [6],
suggest that the crust does not fail in this way. Because of the high pressure,
any cracks that form will be immediately healed. Instead, we expect a region
of the crust to shatter, ie. we expect that the material will instantaneously
become relaxed within a certain region, and immediately refreeze to solid
form with the new (relaxed) configuration. Our aim is to explore the effect
that this type of crust shattering has on the dynamics of the neutron-star
binary system. A major step towards this goal was presented in Gundlach
et al. where a conservation-law formulation for elasticity in general relativity
was demonstrated [7].

3. Elasticity

Relationship with the relaxed state

If a block is stretched in one direction and squeezed
in the other such that the density remains the same,
then the behavior of the new configuration is exactly
the same as that of the original. If the same deforma-
tion is performed on a block of elastic material, the

behavior is clearly different. This is because, in elasticity, we must keep track
of particle positions with respect to their relaxed state.
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To do this, we follow Carter
and Quintana’s approach [8]
of using two manifolds and
a map between them. One
manifold, the matter space
(with metric, kAB), keeps
track of the preferred particle
positions with respect to one
another, while the other, the
spacetime (with metric, gab), is the background with respect to which the
material moves and deforms. The map between them, along with the metrics
of both manifolds, encodes any information about deformations that occur:
we compare the matter-space metric, kAB, to the spacetime metric pushed
forward onto the matter space, gAB, with the relaxed state occurring when
these two tensors are proportional to one another.

In order to write the evolution equations in first-order form, we introduce
the configuration gradient, the spatial derivatives of the map between the
two manifolds. From the commutation of partial derivatives, we can write
evolution equations and constraints for the configuration gradient.

Shear Stresses

If a block of fluid is sheared so the two halves move in opposite directions, a
contact discontinuity is formed (where velocity is discontinous), but no waves
propagate away from the interface; however, if this action is performed on a
block of elastic material, waves do travel away from the interface.

Therefore, shear stresses must be included for elasticity; to do this, an
anisotropic stress term is added to the usual perfect-fluid formulation of the
stress-energy tensor. If examined in the rest frame of the fluid, the stress-
energy tensor of a perfect fluid is diagonal; the anisotropic stress term adds
off-diagonal components to the spatial part of this tensor, but not to the
time-space components, which would represent heat flow.

6. Interfaces

Where is the interface?

We track the interface using a level-set function. Positive values of the func-
tion represent cells where one material is present, while negative values show
where the other material is present: the interface is located where the level-
set function equals zero. This function is advected over the computational
grid along with the fluid, thus tracking the location of the interface.

What happens at the interface?
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Image based on figure from [9].

To treat the boundary, we evolve each material
separately, assigning ghost-fluid cells at the edges
of the regions occupied by another material. In
the original ghost-fluid method (GFM) [9], ghost
cells are assigned in a relatively intuitive way:
since pressure and velocity normal to the inter-
face should be continuous, these are copied from
the real fluid occupying the same cells as the

ghost fluid. Tangential velocity and entropy can be discontinuous, so we
copy these from the nearest real-fluid cell that is of the material associated
with the ghost-fluid cell we are considering. Density is then calculated from
entropy and pressure.

While this is the most intuitive approach, other methods can also be used
determine the behavior at the material interface. For example, Barton and
Drikakis [10] have developed a modified GFM where a linearized interface
Riemann solution is used to determine the physically correct behavior at the
boundary; the ghost-fluid cells are then assigned to reproduce the correct
behavior to the real-fluid side of the interface.

5. Shattering
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Shattering is the instantaneous relaxation of
the material in some region. Numerically,
this is achieved by resetting the matter-space
metric such that it is proportional to the
spacetime metric pushed forward onto mat-
ter space, where the constant factor is the
density.

The figure to the left shows a shear-stress
component of the stress tensor in the time
evolution following a shattering event. Here

we took homogeneous initial data and shattered a circular region in the center,
setting the shear stress in that region to zero.

5. Results
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The results of a Newtonian elas-
tic Riemann problem match the
exact solution published in [11].

Riemann problems are standard tests for high-
resolution shock-capturing numerical codes: we
have used several Riemann problems to test our
code [7].

I The code can reproduce published Newto-
nian exact Riemann solutions in elasticity.

I The results of the relativistic code approach
the results of the Newtonian code and the
Newtonian exact solution in the Newtonian
limit (v << c).

I The relativistic results match the relativistic
exact solution.

I The elasticity code functions in 2D, and the
2D results are consistent with 1D results.

I A Riemann test in 2D cylindrical coordinates demonstrates that the for-
malism works for curved coordinates.

I Initial tests using the GFM for 1D fluid interfaces agree with published
Newtonian and special relativistic tests.

I Initial artificial “shattering” simulations in 1D and 2D have encountered
no numerical problems.
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