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In what concerns dark energy, the ultimate goal of space and ground based surveys is discriminating between various candidate
models and a cosmological constant. Here we report results of a work on finding the best set of parameters and measurables for
this purpose. In particular we show that independent measurements of cosmological parameters of homogeneous component -
the background cosmology - and anisotropies are necessary, notably for distinguishing between interacting quintessence models
and modified gravity. This put in evidence for the advantage of surveys able to observe Large Scale Structures as well as a
large number of supernovae. The role of CMB measurements for improving discrimination will be mentioned too. We also
propose quantities that determine the discrimination power of a survey independent of observed proxy.

Introduction

⋆ Two categories cover majorities of dark energy models:

1. Models based on a scalar field such as quintessence and its
variants like interacting quintessence models, kessence, varying
neutrino mass models, etc.

2. Modified gravity models in which dark energy is explained as
the deviation from Einstein gravity such as scalar-tensor mod-
els, in particular f(R) gravity, Chameleon, DGP, etc.

⋆ The main task of cosmologists today is distinguishing between
these models and a cosmological constant which is yet the best
fit to the data.

Interaction between dark energy and matter

⋆ In majority of these models dark energy can be presented by a
scalar field.

⋆ In modified gravity models in Einstein frame, the scalar field
interacts with matter.

⋆ In quintessence models addition of an interaction between dark
matter and dark energy can solve issues such as coincidence prob-
lem and can naturally produce wde < −1.

⋆ Phenomenologically, interactions can be described as the violation
of energy-momentum conservation of single components.

Phenomenology of interactions

⋆ Interaction in modified gravity: In Einstein frame it is presented
by non-minimal interaction of an scalar field and matter with
curvature. Thus, the violation of energy-momentum is always
proportional to its trace:

Tµν
m ;ν = −C(ϕ)Tν

mν∂
µϕ Tµν

de;ν = C(ϕ)Tν
mν∂

µϕ

⋆ Interaction in quintessence models: Some authors have used
Qµ ∝ Tmu

µ
m for interacting quintessence models (This is Modified

Gravity in our classification !)

⋆ In Quintessence interaction has a microscopic origin =⇒
Quantum/particle physics.

⋆ Interactions in Quintessence models can be more diverse:

• Scattering

• Production by decay of dark matter

Macroscopic description of interactions

⋆ There are few ways for writing microscopic interaction as a func-
tion of macroscopic quantities:

⋆ Fluid description: It depends on the details of the self-interaction
potential of the scalar field. This is not very interesting for
parametrization of observations

⋆ Field equation and energy-momentum conservation are related
and do not include quantum effects such as decay, annihilation,
and scattering.

⋆ Boltzmann equation: It provides a connection between micro-
scopic and macroscopic processes and quantities and Quantum
effects are included in a collisional term.

⋆ Disadvantage: One needs to measure distributions f(x,p) in space-
time and momentum spaces - the phase space.

⋆ Conclusion: Interactions can be described only approximately as
a function of spacetime coordinates.

Approximate description of interaction for
quintessence models

⋆ We can use the thermodynamical definition of energy-momentum
and number density:

nµi =

∫

dp̄ pµfi(p,x), dp̄ ≡
g

(2π)3
d4pδ(E2 − p̃2 −m2

i )

Tµν
i =

∫

dp̄ pµpνfi(p,x)

⋆ Approximate interactions including decay and scattering:

Tµν
m ;ν ≈ −Lmn

µ
m +Amsn

µ
muϕρn

ρ
ϕ ≡ Qµ

m

Tµν
ϕ ;ν ≈ Lϕn

µ
m +Aϕsn

µ
ϕumρn

ρ
m ≡ Qµ

ϕ

uµ ≡
nµ

|n|
, nµ ≈

uνT
µν

m
=
ρuµ

m

⋆ Lm and Ams are decay and scattering couplings.

⋆ Self-annihilation is only important in nonlinear high density re-
gions and is neglected.
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Parametrization of homogeneous cosmology

⋆ Friedman equation:

H2

H2
0

=
∑

i

Ωi(1 + z)3γi +
∑

i

Ωi(Fi(z)− 1)(1 + z)3γi +Ωde(1 + z)3γde(z)

i = cdm, baryons, hot matter, curvature

⋆ Density variation:

B(z) ≡
1

3(1 + z)2ρ0

dρ

dz
=
∑

i

Ωi

(

γiFi(z) + (1 + z)
dFi

dz

)

(1 + z)3(γi−1)+

Ωde(w(z) + 1)(1 + z)3(γde(z)−1)

⋆ H(z)&B(z) can be measured from supernovae and Baryon Acoustic
Oscillations (BAO).

Fiducial models and dark energy
measurements

⋆ When a fiducial ΛCDM cosmology is considered, measured quan-
tities are functions of physical parameters:

Ω
(H)
eff = Ωde, γ

(H)
eff (z = 0) = γde(z = 0)

γ
(H)
eff (z) =

log

(

∑

i
Ωi
Ωde

(Fi(z)− 1)(1 + z)3γi + (1 + z)3γde(z)
)

3 log(1 + z)

Ω
(B)
eff (w

(B)
eff (z) + 1)(1 + z)3γ

(B)
eff (z) =

∑

i

Ωi

(

γi(Fi(z)− 1) + (1 + z)
dFi

dz

)

(1 + z)3γi +Ωde(w(z) + 1)(1 + z)3γde(z) = (1 + z)A(z)

A(z) ≡ B(z)−
∑

i

Ωiγi(1 + z)3(γi−1)

⋆ Superscript (H)&(B) mean measured from Hubble constant H(z)
and from density evolution B(z) respectively.

Efficiency of discrimination between
interacting and non-interacting models

⋆ When some of coefficients Fi(z) 6= 0, in general:

Ω
(H)
eff 6= Ω

(B)
eff , γ

(H)
eff (z) 6= γ

(B)
eff (z).

⋆ Discriminating efficiency Θ is defined as:

Θ ≡
Ω

(A)
eff (w

(A)
eff (z) + 1)(1 + z)3γ

(A)
eff (z) −Ω

(H)
eff (w

(H)
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(H)
eff (z)

Ω
(H)
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(H)
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(H)
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⋆ For an estimated error of ∼ 1% in the measurement of H(z) and
power spectrum at large scales that can be related to B(z), Euclid
is able to discriminate between an interacting dark energy model
and ΛCDM up to Θ . 5%.

Examples of coefficients Fi(z)

⋆ In general, evolutions of coefficients Fi in interacting quintessence
and modified gravity models are different.

• f(R)-Modified Gravity

Fi(z) =

(

1 + fR(R(z = 0))

1 + fR(R(z))

)

3(1−wi)
2

, wm = 0, wh =
1

3
, wk = −

1

3

• A decaying dark matter + ΛCDM:

Fm(t) ≈ exp(
τ0 − t

τ
) + (1 + z)

(

1− exp(
t0 − t

τ
)

)

, τ ≫ τ0

Fb = Fh = 1 γ(z) = 0 Fm(z) > Fm(z = 0)

• A decaying dark matter producing a quintessence field:

ρ̄i(z) = ρ̄i(z0)(1 + z)3(1+wi) exp

(

L(τ (z)− τ (z0)) +Asi

∫

dz
ρ̄ϕ(z)

(1 + z)H(z)

)

Fi(z) = exp

(

−L(τ (z)− τ (z0)) +Asi

∫

dz
ρ̄ϕ(z)

(1 + z)H(z)

)

≈ 1 + L(τ (z0)− τ (z))+

Asi

∫ z

z0

dz
ρ̄ϕ(z)

(1 + z)H(z)
, All Fi(z) are expected to be very close 1.

⋆ A combination of measurements of background cosmological pa-
rameters and perturbations must be used for discriminating be-
tween quintessence and modified gravity models.

How do we measure dark energy parameters ?

⋆ Supernovae are sensitive only to the homogeneous component of
matter distribution - the background cosmology.

⋆ Evolution of perturbations depends on dark energy dominantly
through its dependence on the homogeneous component:

δm(ρ̄de(z) + δρde(z,k), · · · ) ≈ δm(ρ̄de(z), · · · ) + ∂δm/∂ρ̄deδρde(z,k) + . . .

⋆ Nonetheless, for discrimination between models we need to mea-
sure both homogeneous parameters and evolution of fluctuations
independently.

Interaction currents in linear perturbations

⋆ Metric:
ds2 = −a2(1 + 2ψ)dη2 + a2(1− 2φ)δijdx

idxj

⋆ Energy-momentum conservation for each component:

δρ′m + 3H(δρm + δPm)− (3φ′ + ikjv
j)(ρ̄m + P̄m) = −δQm

0

[(ρ̄m + P̄m)vi]
′ + 4

a′

a
(ρ̄m + P̄m)vi + ikiδPm + ikjΠ

j
i + ikiψ(ρ̄m + P̄m) =

δQm
i

⋆ Interacting quintessence models (we neglect annihilation and pro-
duction):

δQ0
m = (

L

a
+
As

a2
ϕ′)δρm + (

As

a2
δϕ′ +

L

a
ψ)ρ̄m

δQi
m = (ρ̄m + P̄m)(L−

As

a
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vi

a
− P̄m(L
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a
+As

ϕ̄′

a
vi)δij

⋆ Modified gravity:

δQ0 = C

[

(ρ̄m − 3P̄m)
ψ

a
−

1

a
(δρm − 3δPm)

]

δQi = −
Cvi

a
(ρ̄m − 3P̄m)

Potentials in Einstein frame

⋆ For discriminating between quintessence and modified gravity
models its better to use Einstein frame because both models can
be formulated in the same manner. Only their interaction terms
would be different.

φ = ψ =
4πGρ̄m

k2

(

δm + 3(1 +wm)
Hθm
k2

)

+∆ψ

∆ψ =
4πG

k2

(

δρϕ − 3Hδϕ(ρ̄ϕ + P̄ϕ)
1
2

)

φ′ = −
4πGρ̄mH

k2

(

δm + (3 +
k2

H2
)(1 +wm)

Hθm
k2

)

+∆φ′

∆φ′ = −H∆ψ + 4πGa2δϕ(ρ̄ϕ + P̄ϕ)
1
2

⋆ Anisotropic shear is neglected.

Parametrization of Deviation from ΛCDM

⋆ Both modified gravity and quintessence modify φ and ψ. Thus,
a deviation of φ and ψ from ΛCDM does not necessarily mean a
Modified Gravity.

⋆ Deviation of potentials from ΛCDM:

∆ψ =
4πGρ̄m

k2
(ǫ0 − 3ǫ1) ∆φ′ = −

4πGρ̄mH

k2

(

ǫ0 − (3 +
k2

H2
)ǫ1

)

ǫ0 ≡
δρϕ
ρ̄m

, ǫ1 ≡
H(ρ̄ϕ + P̄ϕ)

1
2δϕ

ρ̄m

⋆ ǫ0 depends only on the dynamics and ǫ1 on the kinematics of the
scalar field and their measurement gives a direct insight on the
physics of dark energy.

⋆ In Einstein frame Φ ≡ φ + ψ = 2φ = 2ψ and can be measured di-
rectly by lensing.

Parametrization of Growth Rate

⋆ Evolution equation of growth rate can be parametrize as the fol-
lowing:

f ′H + f(H′ +H2) + f2H2 + 3(C2
sm −wm)(H

′ + fH2) + 3(C2
sm −wm)H

2+
3

2
Ωm(1 +wm)

2H2 + k2C2
sm + E0fH + E1k

2 + E2H + E3H
2 + E4 = 0

⋆ Coefficients Ei = 0 i = 0, 4 are functions of ǫ0 and ǫ1. For ΛCDM
they are all null.

⋆ In quintessence models E1 ≡ 0. Other parameters depend differ-
ently on ǫ0 and ǫ1 in quintessence and modified gravity.

⋆ For ΛCDM f ≈ Ωγ
m. Because deviation from ΛCDM is small, an

approximate solution for interacting dark energy models can be
obtained from linearization of evolution equation of f and can be
used for comparing with observations.

⋆ Euclid can measure Ei coefficients with ∼ 10% accuracy.

Outline

⋆ It would be very difficult to distinguish between modified gravity
models and a quintessence model with only elastic scattering with
dark matter.

⋆ In this case, if quintessence field interacts only with CDM and
not with baryon, separate investigation of the two component i.e.
separate correlation functions and power spectrum can be useful.

⋆ Euclid is able to observe both SN and LSS with unprecedented
accuracies.

⋆ Interacting dark energy models have also implications for pro-
cesses and quantities not directly observed by Euclid such as the
density and nature of hot matter, high energy neutrinos, etc.
Combination of Euclid data with observations of other facilities
such as Air shower detectors and data from high energy par-
ticle accelerators should improve our discrimination power be-
tween various dark energy models and help to understand particle
physics of dark matter and neutrino physics.


