Constraining Modified Gravity and Dark Energy Models with Weak Lensing

Emma Beynon
ICG, University of Portsmouth

Emma Beynon, ICG Portsmouth

Outline

- Motivation
- Why lensing?
- Importance of non-linear modelling
- Predictions for modified gravity
- Predictions for coupled dark energy

Motivation

Problems with ΛCDM

- Fine tuning problem
- Coincidence problem
- Two main alternative ways of explaining accelerated expansion
 - Dynamical dark energy
 - Modified Gravity

Why lensing?

- Some current observations only probe the expansion history
- Weak lensing probes growth history and expansion history

Weak Lensing

Light bundles are distorted by

$$\begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix}$$

Weak Lensing

 Calculate correlation of observed distortions to overcome intrinsic shape noise

 Changes in matter power spectrum → changes in shear correlation function

Lensing at non-linear scales

Modified Gravity

- Alternative to DE
- Gravity can be modified to fit expansion history however produces a distinct growth rate of structure

- DGP: 5D braneworld model where $r < r_c$ 4D gravity $r > r_c$ 5D gravity
- \circ f(R): changes relationship between energy-density and spacetime

Beynon et al. 2010 MNRAS, 403, 353

Modified Gravity

- MG must asymptote to GR at small scales to fit Solar system observations
- Fitting proposed by Hu & Sawicki 2007 – Interpolate between MG non-linear PS and GR non-linear PS

1.5×10 ⁻⁴	À			- 1
1.0	<u> </u>	ΛCDM	.	1 1
		DGP		1 1
	<i>i</i> , <i>i</i> ,	$f(R)$ with $\alpha_1 = 1/3$		IJ
	(', ','	$f(R)$ with $\alpha = 1$		1 1
	1 1 11	f(R) with $\alpha_1 = 1$ f(R) with $\alpha_1 = 2$	'	1 1
1.0×10 ⁻⁴	-/ ; ;;	$I(R)$ with $\alpha_1=2$		1
$\widehat{}$	- 1 / //			1 1
C(0)	- / i ii			1 1
Ö	- 'i''			4 1
	1 11			1 1
5.0×10 ⁻⁵			_	JI
3.0 × 10	/,;	1		1 1
	`	- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	,	1 1
	····	7.00	•	1
	-			1
	-			1 1
01				ا د
1		10	10	ool
		θ [arc min]		
		v [ore min]		

- At least an order of magnitude increase in χ^2 when comparing to ACDM against using linear alone
 - Not including this asymptote falsely increases discriminatory power by up to 90%

Fiducial Model	Modified gravity	Ground-based $\Delta \chi^2$	Euclid $\Delta \chi^2$
ΛCDM	DGP $f(R), \alpha_1 = 1/3$ $f(R), \alpha_1 = 1$ $f(R), \alpha_1 = 2$	6×10^{3} 600 300 60	7×10^4 8×10^3 3×10^3 1×10^3
QCDM	DGP	0.5	5

Coupled Dark Energy

- Alternative to Λ is evolving DE
- Baryon interactions tightly constrained by observations but can couple dark sector

$$\dot{\rho}_{c}' + 3H\rho_{c} = -\beta(\phi)\rho_{c}\phi'$$

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV}{d\phi} = \beta(\phi)\rho_{c}$$

• Use Baldi 2011 CoDECs N-body simulations to obtain non-linear

Coupled Dark Energy

- Important to use full covariance matrix as off diagonal elements change best fit
- β₀≤0.1 at 4σ
 confidence level
 for DES
 - $\beta_0 \le 0.05$ at 5σ confidence level for Euclid

Summary

- Lensing is a powerful discriminant
 between different gravity and DE models
- It's necessary to be careful about the GR limit of modified gravities to get the right lensing predictions
- We now have lensing predictions for MG and cDE
- DES and Euclid will be able to substantially constrain these models