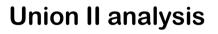
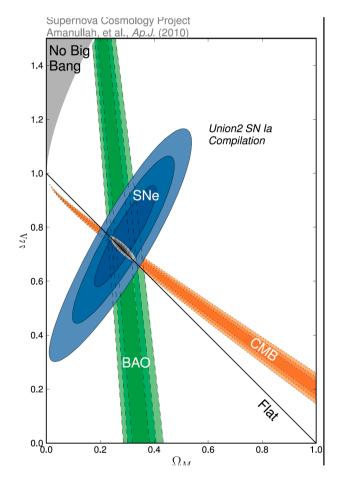
Probing Models of Cosmic Acceleration

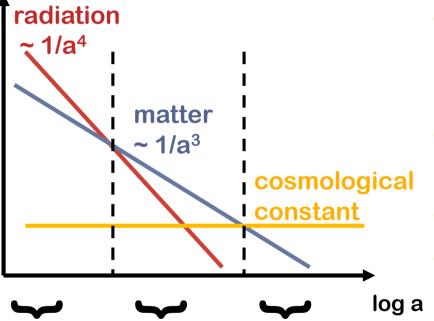

Jochen Weller University Observatory Munich – Ludwig-Maximilians-University Excellence Cluster Universe Max-Planck Institute for extraterrestrial Physics



How much vacuum energy?

Energy densities in the Universe:

- Radiation (from CMB temperature): $\Omega_r \approx 5 \times 10^{-5}$
- combine SNe & CMB:
 - matter: Ω_m ≈ 0.28 (baryons: ≈ 0.04; [BBN/ CMB]
 - cosmological constant: $\Omega_{\Lambda} \approx$ 0.72 (space is close to flat)


Cosmological Constant in GR

 Most general form of Einstein's equations of gravity contains cosmological constant

- "density" Ω_Λ in cosmological constant stays constant
- cosmological constant → accelerated expansion

What is the problem with the cosmological constant Λ ?

log ρ

- "Expected" value from Planck scale: ρ_Λ≈ 10⁷⁸ (GeV)⁴
- Measured value $\rho_{\Lambda} \approx 10^{-45} \, (GeV)^4$

• Why
$$\Omega_{\Lambda} \approx \Omega_{m}$$
 ?

radiation matter vacuum dominated dominated

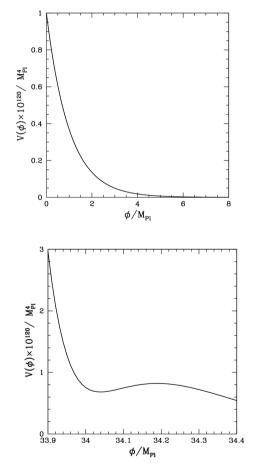
cosmological constant ≅ vacuum energy (Zel'dovich)

If not Λ , what else?

- dynamical dark energy
 - general fluid
 - scalar field (Quintessence, k-essence, ...)
 - elastic (formerly known as solid) dark energy
- modifications of General Relativity on large scales
 - Extra dimensions and brane worlds (DGP)
 - f(R)
 - more exotic modifications: $f(R, R_{\mu\nu}R^{\mu\nu}, R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma})$
- apparent effect; "backreaction" from small scale inhomogeneities

Dark Energy

simple fluid: $p = w\rho$


Deceleration parameter (flat Universe, only DE): $q_0 = -rac{\ddot{a}_0}{H_0^2} = rac{1+3w}{2}$

Hence accelerated expansion for w<-1/3 !

Cosmological constant: w=-1

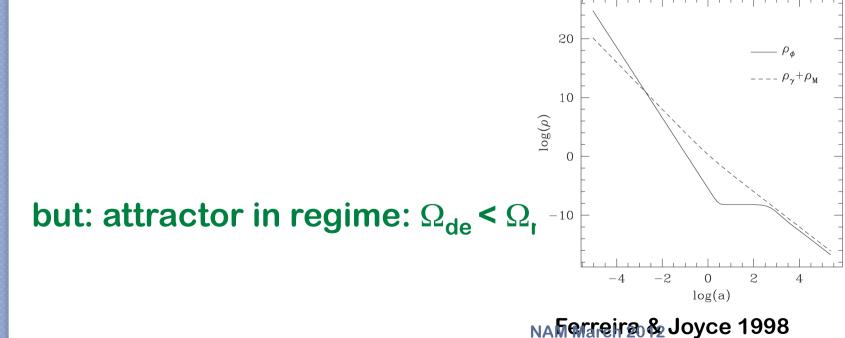
Quintessence

$$\Omega_{\Lambda} = 0.7 \quad \to \rho_{\Lambda} \approx 10^{-48} \text{ eV} = 10^{-121} M_{\text{pl}}^4$$

Dynamical dark energy

Equation of state of scalar field:

$$w = rac{rac{1}{2}\dot{\phi}^2 - V(\phi)}{rac{1}{2}\dot{\phi}^2 + V(\phi)}$$

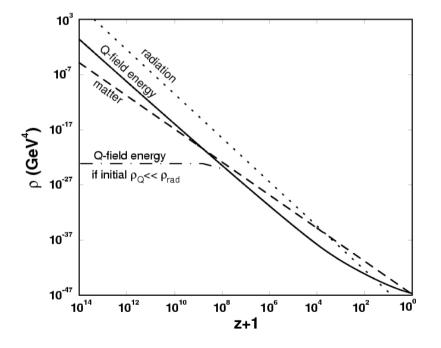


Quintessence

1st try (Wetterich, Ratra and Peebles 1988, Ferreira and Joyce 1998):

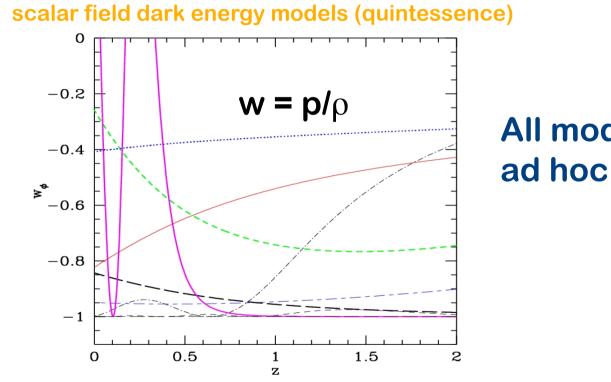
$$V(\phi)=e^{-\lambda \phi/M_{
m pl}}$$

attractor, hence NO FINE TUNING required !


8

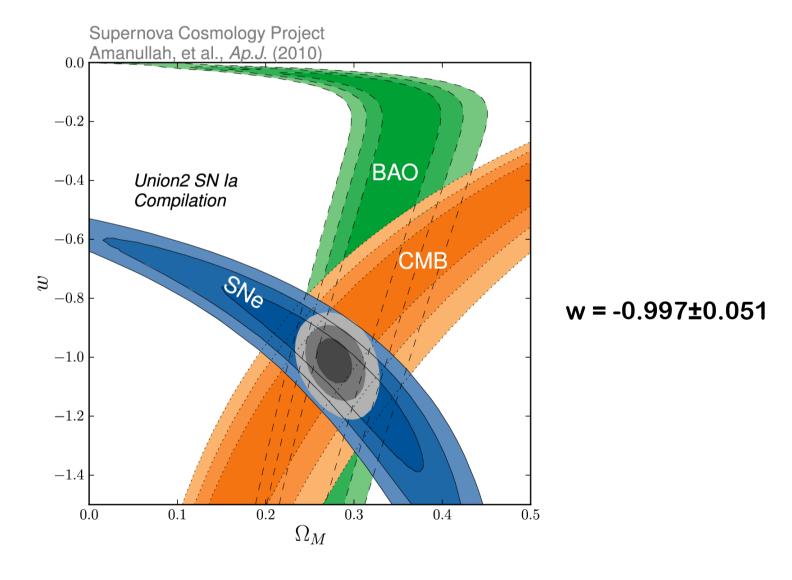
2nd try (Steinhardt, Caldwell et al. 1998):

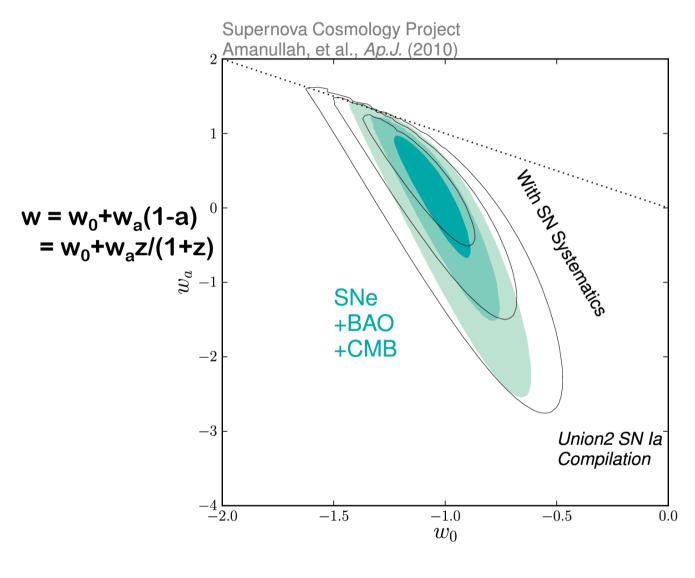
 $V(\phi) = M^4 e^{-M_{
m pl}/\phi} ~~;~~ V(\phi) = M^{4+lpha}/\phi^{lpha}$


tracker solution !

Zlatev et al. 1998

NAM March 2012


Different Quintessence Models


All models

Parameterization: $w = w_0 + w_a(1-a)$ $= w_0 + w_a z/(1+z)$

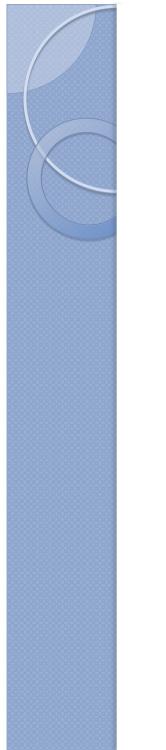
Constraints on w from Union II

Constraints on evolution of w

Modified Gravity as source of cosmic acceleration

 $S_{EH} = \int_{M} \sqrt{-g} d^{4}x \left[\frac{R}{16\pi G} + L_{m} + L_{de} \right]$ $R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = 8\pi G (T_{\mu\nu} + T_{\mu\nu}^{(de)})$ $S_{MG} = \int_{M} \sqrt{-g} d^4 x \left[\frac{R + f(R)}{16\pi G} + L_m \right]$ $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + M_{\mu\nu}[g,\partial g,\partial \partial g] = 8\pi G T_{\mu\nu}$ New particle: Scaleron; tiny mass evolves with time $M^2 = \frac{1}{3\bar{f}_{\rm DD}}$.

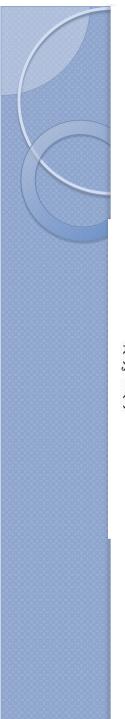
m -> ∞ : std. gravity


NAM March 201

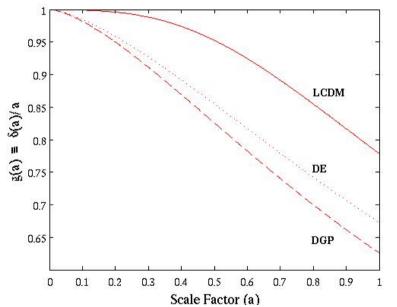
Geometric Degeneracy

 Arbitrary dark energy model with suitable chosen equation of state w (a) can mimic expansion history of any modified gravity model

Example: Dvali, Gabadadze, Porrati (2000)


modified Friedmann eqn.
$$H^2 - \frac{H^{lpha}}{r_c^{2-lpha}} = \frac{8\pi G
ho}{3}$$

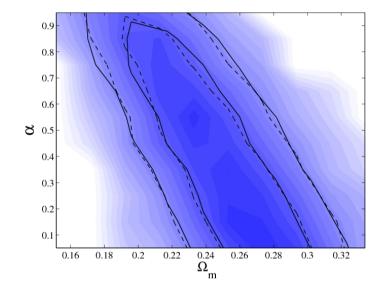
 $r_c = \frac{1}{H_0(1-\Omega_m)^{\frac{1}{2-lpha}}}$

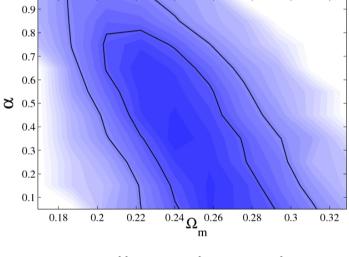

Growth of structures in modified gravity

$$\ddot{\delta} + 2H\dot{\delta} = 4\pi G(1 + \frac{1}{3\beta})\rho_m\delta$$

 δ : overdensity modified gravity

From large scale structure point of view G is varying in time on large scales


The Growth Factor



- Growth can break degeneracy between mDGP and dark energy
- Possible growth probes
 - weak lensing
 - galaxy cluster counts
 - redshift space distortions

Combined Constraints CFHTLS+SNe+BAO

all angular scales α <0.86 (95% C.L.)

 α <0.91 (95% C.L.) DGP marginally ruled out

Thomas, Abdalla, Weller 08

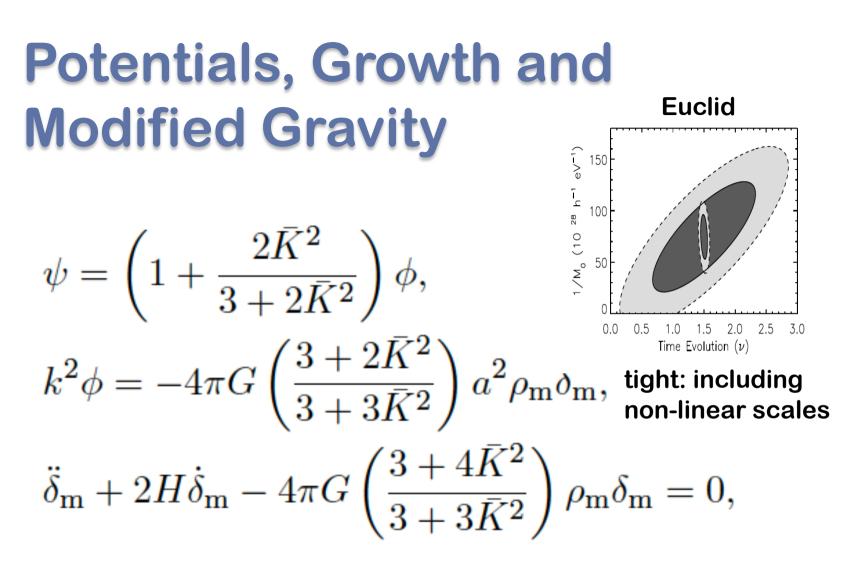
New CFHT results: Heymans talk on Friday

The Story of Two Potentials

 Large Scale Structure related to perturbations in the metric:

 $ds^{2} = a^{2}[(1+2\phi)dt^{2} - (1-2\psi)(dx^{2} + dy^{2} + dz^{2})]$ • **Poisson Equation**

$$k^2 \phi = -4\pi G a^2 Q(k,a) \rho_m \delta_m$$
 std. gravity
Q=1

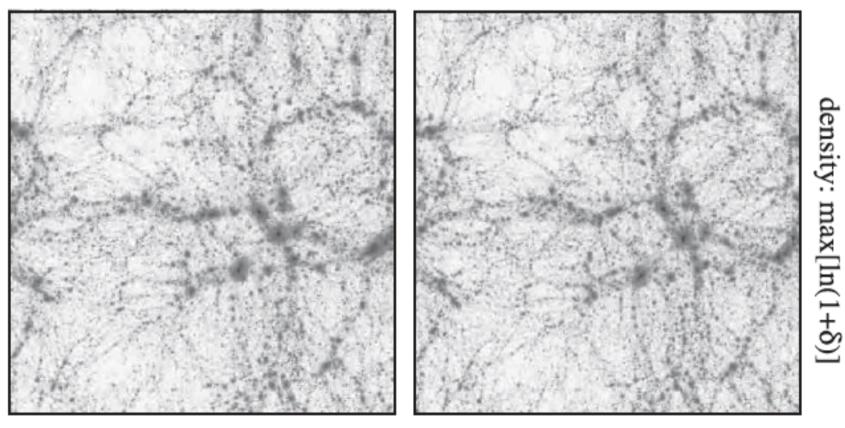

Anisotropic Stress

$$\eta(k,a) = \frac{\phi - \psi}{\psi}$$

std. gravity η =0

Amendola, Kunz and Sapone, 2007

NAM March 2012

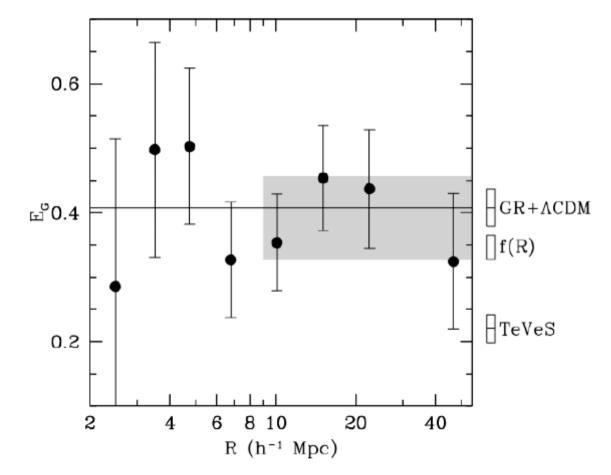


with K=k/(aM(a))

as useful parameterization:

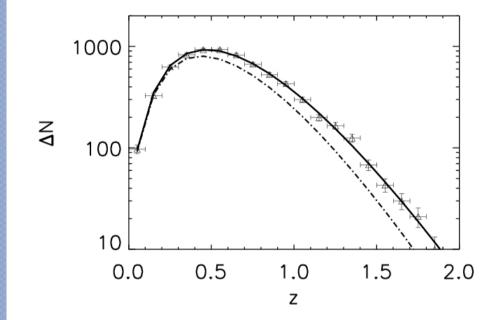
Appleby, Thomas,
$$M^2 = M_0^2 \left(\frac{a^{-3} + 4a_*^{-3}}{1 + 4a_*^{-3}} \right)^{2\nu}$$
, Weller 2011

f(R) in the Non-Linear Regime $f(R) = -16\pi G \rho_{\Lambda} - f_{R0} \frac{\bar{R}_0^2}{R}$ $f_{R0}=|10^{-4}|$ $f_{R0}=|10^{-6}|$


Oyaziu et al. 2008 see also Beynon talk Thursday afternoon, COS4 NAM March 2012 20

What can we measure ?

- galaxy correlations: P_{gal} (k,z) ~ (1+ $\beta \mu^2$)b² δ^2 (k,z) $\beta = \delta^{3}/\delta b$
- Correlation of galaxy ellipticities (weak lensing): $P_{ellipt}(k,z) \sim (\Phi + \psi)^2$
- Correlation of galaxy velocities: $P_z \sim (1 + \beta \ \mu^2)P_r$
- Three combinations can be measured for 5 quantities (velocity, bias, density perturbation, 2 potentials) and two theoretical relations are available: Poisson eqn. and Anisotropic stress: At linear order we can test gravity models
- see Fergus Simpson talk in afternoon (COS4)


Combined Probes of Modified Gravity

Galaxy-Galaxy lensing, galaxy clustering and galaxy velocities Reynes et al. 2010

Cluster Counts in Modified Gravity Model

- MG number counts for σ_8 = 0.75, n=1, M_{lim}=1.7×10¹⁴h⁻¹M_{\odot}
- mock data assuming Poisson errors
- mimic DE model

significant difference between mimic DE and MG

Constraints on Scaleron (f(R)) gravity $\frac{Parameters}{1000_bh^2} = \frac{f(R)}{2.223 \pm 0.053} \frac{f(R) (with gISW)}{2.225 \pm 0.054} \frac{f(R) (with E_G)}{2.224 \pm 0.054} = 2.206$

Parameters	f(R)		f(R) (with gISW)		$f(R)$ (with E_G)		
$100\Omega_b h^2$	2.223 ± 0.053	2.206	2.225 ± 0.054	2.253	2.224 ± 0.054	2.206	
$\Omega_c h^2$	0.1123 ± 0.0036	0.1109	0.1117 ± 0.0036	0.1133	0.1125 ± 0.0036	0.1131	
θ	1.0403 ± 0.0027	1.0392	1.0403 ± 0.0027	1.0416	1.0403 ± 0.0027	1.0394	
τ	0.083 ± 0.016	0.082	0.084 ± 0.016	0.090	0.083 ± 0.016	0.083	
n _s	0.954 ± 0.012	0.950	0.954 ± 0.012	0.965	0.954 ± 0.013	0.952	
$\ln[10^{10} A_{-1}]$	3.912 ± 0.040	3 915	3.900 ± 0.030	3 200	3.913 ± 0.030	3 991	
$100B_0$	< 315	28	< 43.2	0.0	< 319	30	
Ω_m	0.272 ± 0.016	0.268	0.269 ± 0.016	0.272	0.273 ± 0.016	0.279	
H_0	70.4 ± 1.4	70.4	70.7 ± 1.3	70.7	70.3 ± 1.3	69.6	
$10^{3} f_{R0} $	< 350	46	< 69.4	0.0	< 353	51	
$-2\Delta \ln L$	-1.104		1.506		-0.696		

SNe, BAO, Hubble CMB, WL, galaxy flows galaxy-galaxy lensing Cluster counts of MaxBCG clusters and groups: three mass bins and two redshift bins

TABLE III: Same as Tab. I, but for f(R) gravity. $-2\Delta \ln L$ is quoted with respect to the corresponding maximum likelihood flat Λ CDM model. Limits on B_0 and $|f_{R0}|$ indicate the one-sided 1D marginalized upper 95% C.L. Note that as $B_0 \rightarrow 0$ reproduces Λ CDM predictions, the slightly poorer fits of f(R) gravity should be attributed to sampling error in the MCMC runs.

Parameters	f(R) (with CA)		$f(R)$ (with $E_G\&CA$)		f(R) (all)	
$100\Omega_b h^2$	2.209 ± 0.054	2.204	2.213 ± 0.054	2.235	2.216 ± 0.054	2.210
$\Omega_c h^2$	0.1064 ± 0.0032	0.1112	0.1073 ± 0.0029	0.1108	0.1076 ± 0.0028	0.1104
θ	1.0390 ± 0.0027	1.0398	1.0392 ± 0.0027	1.0413	1.0394 ± 0.0027	1.0398
τ	0.077 ± 0.016	0.080	0.077 ± 0.015	0.084	0.079 ± 0.015	0.075
n _s	0.953 ± 0.012	0.951	0.954 ± 0.012	0.956	0.954 ± 0.012	0.951
1n[10 ¹⁰ 4 1	$^{\circ}$ 175 ± 0.008	3 900	3.170 ± 0.037	3 903	3.189 ± 0.0037	3 103
100B0	< 0.333	0.100	< 0.152	0.000	< 0.112	0.001
Ω_m	0.247 ± 0.014	0 268	0.251 ± 0.012	0.261	0.252 ± 0.012	0.264
H_0	-0.9 + 1.4	70.5	71.9 ± 1.3	71.4	71.9 ± 1.2	70.8
$10^3 f_{R0} $	< 0.484	0.001	< 0.263	0.000	< 0.194	0.002
$-2\Delta \ln L$ 0.802		0.264		0.926		

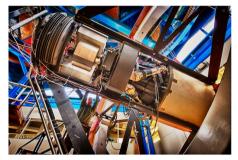
Lombriser, Slosar, Seljak & Hu 2010

TABLE IV: Same as Tab. II, but for $f({\mathbb R})$ gravity. See also Tab. III.

 $B_0 \sim m^{-1}$ mass of additional scalar degree of freedom of gravity

Uses SDSS maxBCG catalog

NAM March 2012



Conclusions

- Current constraints are homing in on cosmological constant (at the 5-10% level)
- Currently only weak constraints on the evolution of the equation of state
- Constraints on modification of gravity are not very strong

Outlook

- **Next Generation Dark Energy Probes (like** DES, PanStarrs) will push constraint on w below 2% and begin to constrain evolution in w (Nichol, Mohr and Farrow talk, Friday afternoon)
- Euclid (2019) will allow to differentiate different cosmic acceleration scenarios and dark energy models (evolution in w, different growth)(see Tom **Kitching talk, Friday** morning)

