The magic of non-rotating methanol disks

Huib van Langevelde & Kalle Torstensson - JIVE & Leiden Gabriele Surcis & Wouter Vlemmings - Bonn Anna Bartkiewicz & Marian Szymczak - Torun

Star formation

Building up evidence that high-mass stars form in similar fashion as low mass stars

- Accretion disks needed to overcome radiation pressure
- Expect disks to exist when outflow is present

Methanol masers exclusively associated with high mass star formation

- Small percentage of (H/U)CHII regions association
- High mass cores in all other cases
- Not clear what the physical agent is
 - Not clear what the evolutionary stage is
 - How can we use methanol masers for understanding star formation?

Image credit: Cormac Purcell

Methanol

- Very rich spectrum
- Maser modeling shows (Cragg et al '05)
 - High abundance of methanol
 - Requires grain chemistry and shocks
 - •T: 100-300 K
 - n: 10⁴-10⁹ cm⁻³
 - For long amplification paths
 - IR from dust

6.7 GHz can be studied with EVN with AU resolution

- Even if most emission resolves out
- Trace kinematics

Cep A spectra MERLIN, EVN, VLBA (12GHz)

xcitation (K)

Important EVN result

•9/31 (30%) masers look elliptical

- From blind maser survey
- EVN sensitivity and 8 station imaging

Bartkiewicz et al 2009, A&A 502 155

Important EVN result

•9/31 (30%) masers look elliptical

- From blind maser survey
- EVN sensitivity and 8 station imaging

Bartkiewicz et al 2009, A&A 502 155

Bartkiewicz et al 2005, A&A 442 L61

huib 19/09/10

Close massive SFR Cep A

Cep A - Modelling

Fit ellipse to maser positions r ~ 600 AU

Model the velocity field based on the fit Infall velocity of 1.7km/s

Cep A - Modelling

Fit ellipse to maser positions r ~ 600 AU

Model the velocity field based on the fit Infall velocity of 1.7km/s

Cep A - Modelling

Fit ellipse to maser positions r ~ 600 AU

Model the velocity field based on the fit Infall velocity of 1.7km/s

Proper motions of 12 GHz (VLBA)

 No clear sign op internal motions between East and West sides < 2.5km/s

• But able to confirm the parallax distance by Moscadelli et al 2009

Similar results for ring source

VLBA 12GHz astrometry does not show structural motions

- But measure parallax distance
 - 3.19kpc closer than near kinematic distance (5kpc)

Similar results for ring source

EVN symposium Manchester, 21-23 September 2010

huib 19/09/10

Comparing physical parameters

	Сер А	Ring source
Distance	700рс	3.19kpc
Methanol ring diameter	1200AU	812AU
Enclosed mass (luminosity est)	18Mo	20Mo
Expected rotation velocity	6.5km/s	5.1km/s
Inclination	<20°	74°

No sign of rotation

- In radial motions or proper motion
- Consistent with EVN sample

In fact velocity structure erratic

some spurs or gradients seen in individual spots

Similar for EVN sample

No significant rotation detected either

- But detection of radial motions quite common
- Could be Infall or outflow
 - Sign of inclination is ambiguous
 - Depends on what is front or back

Model & data: G33.980-00.019

Pre-shock, post-shock, spurrs

Gravity is not the dominant force at maser location

- •So what is?
- Thermal pressure, radiation pressure, magnetic fields?

Magnetic force

- Detected a 23 mG field
 - By combining Effelsberg and MERLIN data
- Deprojection structure perpendicular to "disc"

Similar orientation as outflow

 Conditions for collapse along field lines

 Magnetic field dominates over turbulent support

 Similar results found in other sources

Working hypothesis

Radial motions in Cep A seems to be infall

- See only front side masers
- Possible absorption of back side by free-free optical depth
- Or maser effect, amplifying background

Masers on interface accretion and the disk

- Methanol masers in pre-shock gas?
- Also identify as the place where methanol is released from grains
 - Such large scale structures unique to high mass sources?

Other ways to address the issue

Find the physical conditions

And the methanol abundance from thermal transitions

Seems to indicate methanol is generated close in

and entrained in large scale outflow

Conclusion

- Evidence is building up that methanol masers originate in the accretion disk/infall interface at least in a fraction of sources
 - Can possibly explain few more non ring sources
 - But quite possible association with outflow also exist
 - Identification of physical structure and evolutionary stage closer
 - Makes them really suited to use for signposts
 - Good news for astrometry
 - Dynamics of the masers connected to shock internals

Contributing to the understanding of how new worlds form.

<u>0/09 dinu</u>