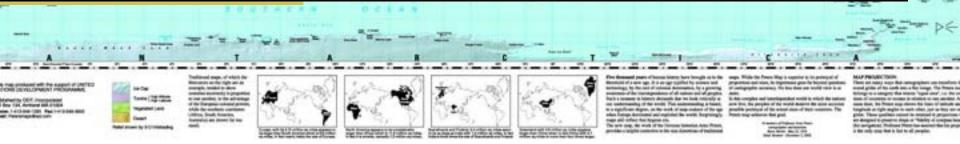
The Square Kilometre

Array


Richard Schilizzi SKA Program Development Office

EVN Symposium, Manchester September 2010

Time line

1995-00 2000-07 2008-12 2013-23 2020-50+ Preliminary R&D Initial Concept Stage System Design Stage Detailed design & construction Operations

The SKA concept

> up to 1 million m² collecting area distributed over baselines of 3000+ km

> 50% within 2.5 km, 75% within 180 km, 100% within 3000+km

- > operating at frequencies from 70 MHz to 10 GHz $(\Lambda\Lambda 4m-3cm)$ with two or more detector technologies
- Connected to a data processor and high performance computing system by an optical fibre network

providing

- > 40 x sensitivity of EVLA, and
- > up to 10000 x survey speed

A survey instrument with unprecedented capability to follow up individual objects with high angular and time resolution

- Construction will proceed in two phases:
 SKA1, SKA2
 SKA1 will be a subset (~10%) of SKA2
- Major science observations already possible with SKA₁ in 2020

ROADMAPS

Europe AstroNet

SKA and E-ELT equally high priority for ground-based large-scale projects

US Decadal Review

SKA represents the long-term future for radio astronomy. Middecade review opportunity for further funding

Australia Decadal Plan: Pathway to SKA remains #1 priority for radio astronomy in Australia. €200M in investment in radio astronomy infrastructure/capability.

African Union Heads of State acknowledge importance of SKA in the development of knowledge-based economies and driving HCD programs. South Africa is spending €200M on radio astronomy.

Status (2)

SKA project is evolving quickly

- significant investments in tech. verification
 programs, pathfinders & precursors
- government ministries & funding agencies are engaged

Key decisions coming up (2010-12)

- future organisation & governance for preconstruction phase (2012-15)
- pre-construction funding
- site decision

SKA Key Science Drivers

ORIGINS
Neutral hydrogen in the universe from the Epoch of Re-ionisation to now

When did the first stars and galaxies form? Properties of galaxies & how did they evolve? Dark Energy, Dark Matter

≻Cradle of Life

FUNDAMENTAL FORCES > Pulsars, General Relativity & gravitational waves

Origin & evolution of cosmic magnetism

TRANSIENTS (NEW PHENOMENA)

Science with the Square Kilometre Array Editors: Christopher Carilli, Steve Rawlings

Science with the Square Kilometre Array (2004, eds. C. Carilli & S. Rawlings, New Astron. Rev., **48**)

Galaxy evolution: first galaxies and black holes

Resolve AGN and star formation in weak objects

>Direct imaging of complex evolving structures associated with accretion disks and jets

>HI absorption systems, kinematics and distribution of gas close to AGN

 \succ Water masers in accretion disks, H₀ and dark energy

>High resolution mapping of redshifted radio absorption lines,

measurement of changes in fundamental constants with time

Strong field tests of gravity using pulsars

 \triangleright Astrometry \rightarrow model independent distances to pulsars

Strong gravitational lensing

 $> 10^5$ lensed systems out to z~1, evolution of the luminous and dark matter distribution of galaxies and clusters

VLBI science and the SKA(2)

Astrometry

 distance determination of 1000s of pulsars, trace ISM density, temperature and turbulence
 mass function of many binary systems
 absolute astrometry and geodesy to determine the inertial reference frame to <10 µarcsec

Astrobiology at Long Wavelengths

>proto-planetary disks, pebble-sized rocks

Other science

resolving stellar flares and stellar winds
 direct imaging and tracing evolution of jets in galactic X-ray binary systems
 new types of transient objects

SKA Key Science Drivers

ORIGINS >Neutral hydrogen in the universe from the Epoch of Re-ionisation to now

When did the first stars and galaxies form? How did galaxies evolve? Dark Energy, Dark Matter

➤Cradle of Life

FUNDAMENTAL FORCES >Pulsars, General Relativity & gravitational waves

Origin & evolution of cosmic magnetism

TRANSIENTS (NEW PHENOMENA)

Science with the Square Kilometre Array Editors: Christopher Carilli, Steve Rawlings

Science with the Square Kilometre Array (2004, eds. C. Carilli & S. Rawlings, New Astron. Rev., **48**)

Square Kilometre Array Technical Requirement Snapshot

Wavelength	1 cm–4 m
(Frequency)	(0.07–25+ GHz)
Sensitivity	$A_{eff}/T_{sys} \sim 10000$
	(10 nJy, 1000 h)
Field of	1 deg ² or larger
view	(@ 1 GHz)
Survey	~ 10 ¹⁰ deg ² m ⁴ K ⁻²
speed	(100 Gpc ³ survey
	of H I to <i>z</i> > 1.5)

Key Science for Phase 1 (SKA₁)

ORIGINS ≻Neutral hydrogen in the universe from the Epoch of Re-ionisation to now

When did the first stars and galaxies form? How did galaxies evolve? Dark Energy, dark matter

Science with the Square Kilometre Array Editors: Christopher Carilli, Steve Rawlings

FUNDAMENTAL FORCES >Pulsars, General Relativity & gravitational waves

Science with the Square Kilometre Array (2004, eds. C. Carilli & S. Rawlings, New Astron. Rev., **48**)


1) Low frequency array for 70 - 450 MHz for measurements of <u>Epoch of Re-ionisation</u> and <u>hydrogen in the distant universe</u>

2) Dish array with single pixel feeds for 450 MHz to3 GHz

for <u>pulsar timing</u> \rightarrow tests of strong gravity and gravitational waves, and <u>hydrogen in the nearby</u> <u>universe</u>

Baseline lengths up to 100km

SKA₁ baseline design

Advanced Instrumentation Program


- Further development of innovative wide-field "radio camera" technologies at mid-frequencies
- \succ potential for enhancing SKA₁ and be a major part of SKA₂

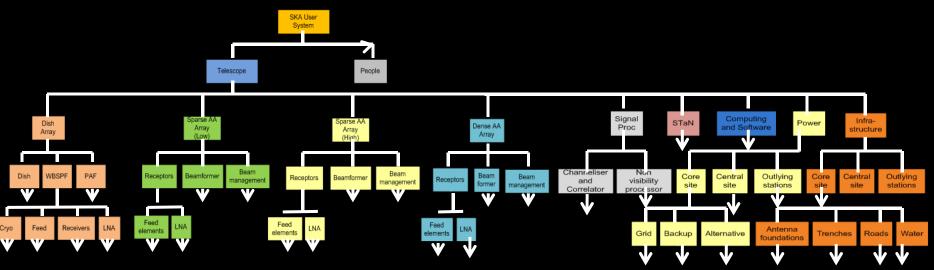
dense aperture array (FoV ~ 200 deg²)

phased array feeds (PAFs) on the dishes (FoV ~ 30 deg²)

> Decision in 2016

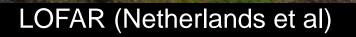
SKA is driving development of new science & technical solutions

Dishes, feeds, receivers (N=3000) Aperture arrays (N=250) Signal transport (800 Tbit/s) Signal processing (exa-MACs) Software engineering and algorithm development High performance computing (exa-flop capability) Data storage (exa-byte capacity) (Distributed) power requirements (50 -100 MW)


INDUSTRY ENGAGEMENT IS CENTRAL TO THE SKA

SKA System Design (2007-2012)

Contributing programs (70 fte/yr)
EC FP6 SKA Design Study (SKADS)
EC FP7 Preparatory Phase (PrepSKA)
US Technology Development Program
"Precursor" telescopes on the candidate sites


(ASKAP (AU), MeerKAT (SA))

"Pathfinder" telescopes like e-EVN, e-MERLIN

Baseline design component: Sparse aperture arrays for the lowest frequencies

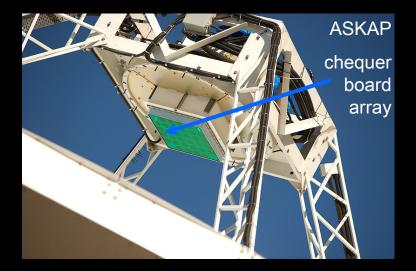
MWA (USA, Australia)

Baseline design component: Dishes + single pixel feeds

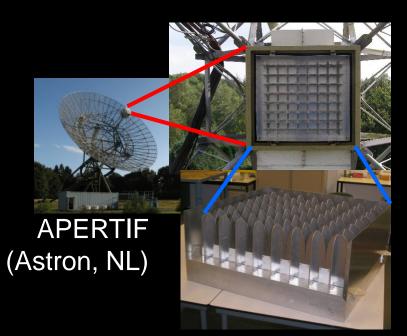
MeerKAT (South Africa) 80x12m composite dishes

42x6m hydroform dishes

ATA (USA)


ASK/ 36x1

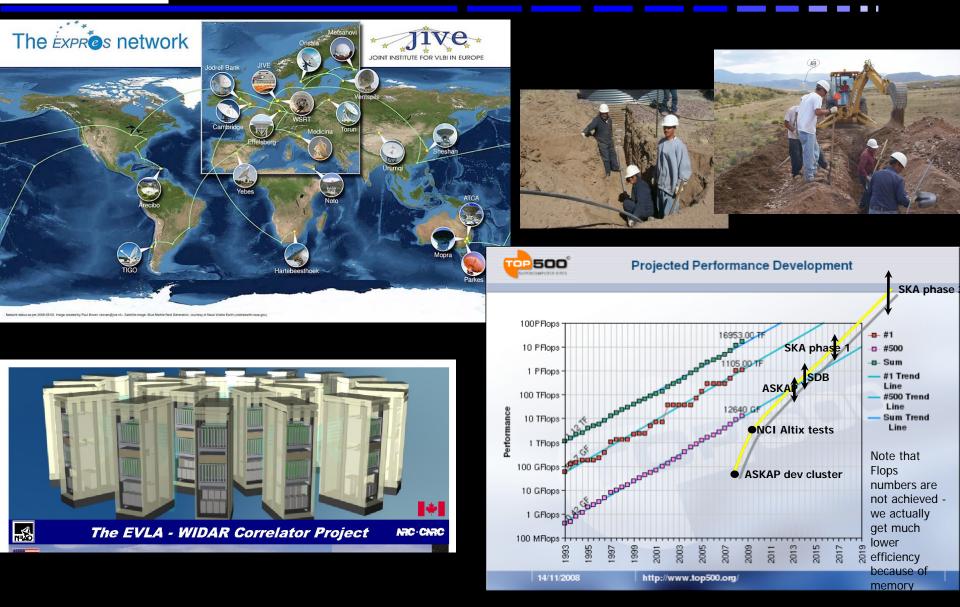
10 m composite prototype


RT

ida)

Advanced Instrumentation Program: dishes+multi-pixel feeds

Advanced Instrumentation Program: dense aperture array


FP6-SKADS

EMBRACE

SKA SOUARE RILOMETRE AREAY

Signal transport, signal processing

> Physical requirements

Extremely radio quiet environment At least 3000 km in extent Low ionospheric turbulence Low tropospheric turbulence

> Two candidates short-listed in 2006

> Site selection process

South Africa + 7 countries

Top level schedule for the SKA

Technical	
2008-12	telescope system design and cost
2013-15	detailed design & pre-construction phase
2016-19	Phase 1 construction
2016	Advanced Instrumentation Program decision
2018-23	Phase 2 construction
2020→	full science operations with Phase 1
2024→	full science operations with Phase 2

Programmatic

- 2011 establish SKA organisation as a legal entity
- site selection
- construction funding approved for Phase 1 (350 M€, 2007)
- construction funding approved for Phase 2 (1.2 B€, 2007)

Further information www.skatelescope.org