

BCGs	ore likely to host AGN than other laxies same mass et al. 2006)	nologies	Belative Becl. (arcsec)	rerseus A
al properties of Radio Band	 →They are mo radio-loud gal of the (Best 	\rightarrow different kpc scale morph	17 23 10 010+173 17 23 10 010+173 19 010 10 010 10 010 00 010 10 010 10 010 010 0100 010	
Gener	10.0 10.5 10.0 10.5 10.0 10.5 10.0 10.5 10.0 10.5 10.0 10.5 10.0 10.5		transformation of the second s	JC402 (A2034)

BCG Sample

Aim and method (Liuzzo et al. 2010)

	- The aim of the project: at mas scale, it is not yet $ $						
	present a statistically study	Abell Cl.	DC	ы	kpc/arcsec	BCG	
		262	0	0.0161	0.328	NGC708	
•	- Abell Clusters with DC ≤ 2 and Declination $> 0^{0}$	347	г	0.0187	0.380	NGC910	
		6 9	г	0.0232	0.468	3C75A	
						3C75B	
•	- no selection on cluster condition	407	64	0.0470	0.922	UGC2489	_
	and/or BCG radio nomar	426	0	0.0176	0.358	3C84	_
	allu vi DCU Iaulu puwel	539	G	0.0205	0.415	UGC3274	_
		569	г	0.0196	0.397	NGC2329	_
	22 Aboll Clinetore	576	G	0.0381	0.755	CGCG261-059	_
•		779	г	0.0226	0.457	NGC2832	
•	\rightarrow total 27 objects	1185	G	0.0304	0.608	NGC3550	_
		1213	64	0.0468	0.918	4C29.41	_
		1228	г	0.0350	0.697	IC2738	_
	A A A A A A A A A A A A A A A A A A A	1314	г	0.0341	0.679	IC708	_
						IC712	_
		1367	г	0.0215	0.435	NGC3842	_
I						3C264	_
		1656	г	0.0232	0.468	NGC4874	_
	All Paul Paul Paul Paul Paul Paul Paul Pa	2147	ч	0.0356	0.708	UGC10143	_
		2151	г	0.0371	0.737	NGC6041	_
1,	$5 \text{ GHz} \underline{\text{VLBA}}$ observations \rightarrow news for 23 sources					NGC6047	_
J	2007 June /2008 March)	2152	г	0.0374	0.742	UGC10187	_
Ľ		2162	ч	0.0320	0.639	NGC6086	_
I	3 hours for source in phase reference mode	2197	г	0.0303	0.006	NGC6173	_
		2199	г	0.0303	0.606	3C338	_
ı	Resolution · 3mas x 1 8 mas	2634	г	0.0312	0.624	3C465	_
		2666	г	0.0265	0.533	NGC7768	_

- $\overline{Noise} \sim 0.1 \text{ mJy/beam}$

	BCG Sample
	(Liuzzo et al. 2010)
	Outside the Sample (to increase the statistic)
	Abell Clusters but with DC>2
	 B2 0836+29II in A 690 (O'Donoghue et al. 1990; Giovannini et al. 2005);
	• Hydra A in A780 (Taylor 1996; Wise et al. 2007);
	 4C 26.42 in A1795 (Liuzzo et al. 2009a; Salomé & Combes 2004);
	• 3C317 in A2052 (Venturi et al. 2004);
	 B2151+174 in A 2390 (Augusto et al. 2006);
	 PKS 2322-123 in A 2597 (Morris & Fabian 2005; Taylor et al. 1999)
	• PKS 1246-410 (NGC4696) in A 3526 (Taylor et al. 2006)
	extended sample = 34 sources
At parsec	scale, also nuclei of radio loud BCGs have structures sometime very complex

I

Results (Liuzzo et al. 2010)

BCC	pc structure	j/cj ratio	Bcoeff	Se.5 nuly	LogP. 5 W/Hz	Seame Ruly	LoP _{6.408} W/Hz	Svlbi Sescile(%)	core domina
NGC708	J			m	21.47	364	23.33	60	0.26
NGC910	ր.ը	,	2	,	,	,	,	9	'
3C75A	15	262	≥0.35	÷	21.87	<u>1</u> 80	23.37	100	0.60
3C75B	15	≥ 4.6	≥03	20	22.39	190	23.37	100	2
3C84	23	6	0.14	28.17×10^3	<u>ณ</u> ม	51.68×10 ³	25.56	8	6.0
UGC3274	ր.ը	,	,	<14	,	,	'	,	'
UGC2489	15	22 8	≥0.2	ষ	22.32	2.83×10^{3}	25.17	8	0.13
NGC2329	15	242	≥0.29	160	23.14	1300	24.05	8	6.4
CGCG261-059	15 15	≥1\$	≥0.12	51	21.71	6.54	22.34	100	1.8
NGC2832	ո.գ	•		24	,		,	4	'
NGC3550	ո.գ	,		<1.4	,		,		'
4C29.41	15	23 8	≥0.26	4	23.33	135.2	23.84	100	8.71
IC2738	ո.գ	•	,	,	,	,	,	,	'
IC708	15	۲65 ک	2036 2036	011	23.47	901.1	24.39	ą	5.62
IC712	ո.գ	•		14.02	22.58	48.72	23.12	۵	437
NGC3842	ո.գ	,		6	22.98	101.88	23.03	Ť	0.36
3C264	15	%	≥034	200	23.32	17×10^3	25.25	100	1.17
NGC4874	15	≥1.6 ≥	6070A	11	21.13	351.96	23.63	100	80.0
UGC10143	ո.գ	,		а	<21.77	14.87	22.64	,	35135
NGC6041A	J	,	,	€0 <u>5</u>	≤21.92	21.5	22.84	001	1.45
NGC6047	ր.ը	,	,	68	22.42	1960	24.80	2	0.28
UGC10187	ր.ը	,	,	q	<21.81	111.7	23.56	,	<0.41
NGC6086	ո.գ	•	,	7	<21.37	201.35	23.68	,	<0.12
NGC6173	15	<u>v</u> 4	20.03	3.7	21.89	12.97	22.44	8	2.40
3C338	23	22	0.16	480	24.01	18.12×10^{3}	25.59	8	3.47
3C465	15	87 20	≥0.54	246	23.74	10.38×10^{3}	25.37	100	2.57
NGC1768	15	ž	≥0.02	0.74	21.08	2.6	21.62	100	1.17
B2 0836+29II	15	8 2	≥0.54	131	24.31	1139	25.24	100	11.20
Hydra A	23	2	0.04	168	24,08	132×10 ³	26.98	100	0.58
40 26.42	23	1.4	20.0	5	23.71	3153	25.48	80	2.04
3C 317	23	2	0.08	310	23.99	132×10^{3}	26.56	100	0.72
B2151+174	23	ষ	0.27	<u>16</u>	25.40	538	25.92	100	55
PKS 2322-123	23	2	900	593	24.0	7.2×10^3	26.11	8	1.66
DVC 13AC 410		ş	2.2.4						100

r cases of BCGs sell 1795 (Liuzzo et al. 2009a)	 General cluster and BCG information: z = 0.0633 cool core cluster → cooling in the central 200-kpc region (Ettori et al. 2002) wbr = -23, cD galaxy Mv= -23, cD galaxy strong emission line around cD (Capetti et al. 2000) strong emission line around cD (Capetti et al. 2000) molecular gas in the cD (Falcke et al. 1998) x-ray filament coincident with Hα (Fabian et al. 1994) High RM → hot (10⁸ K) and dense (0.03 cm⁻³) X-ray emitting gas (Ge et al. 1993) CO emission (Salomé & Combes 2003) FRI, Z-shaped small (2 arc x 12 arcsec) at 5 GHz. core power LogP = 23.70 (W/Hz) 	
Peculia 4C 26.42 in Ab	<figure></figure>	

4C 26.42 in Abell 1795

CO emission (Salomé & Combes 2003)

4C 26.42 in Abell 1795 (Liuzzo et al. 2009a)

4C 26.42 in Abell 1795 (Liuzzo et al. 2009a)

Contour levels= -0.45, 0.45, 1.2, 2.4, 4.8 mJy/b

S., and S., are reformed to the flux dentaty at lower v, and higher v., frequency between the two considened for the spectral analysis. All flux dentaty values are derived from 2008 February 26 observations.

5858

\$23

048

1.86×0.86,4

8.4-22

Peculiar cases of BCGs NGC6047 in Abell 2151	Mathematical and the stand of the stand	to properly map parsec structured core emission - non detection due to: radio quiet core? excluded core coordinates? excluded core coordinates? excluded diffuse core emission? To check
---	---	--

3C 84 in A426

Refer to talk of K.Kellermann...

le	
du	
Sal	
ded	()
ten	. 201
ex1	et al
the	iuzzo
for	(Γ)
lts	
esu	
\mathbf{Z}	

N.D.	2 (20%)	8 (36%)
point	1 (10%)	1 (5%)
one-sided	I	13 (59%)
o-sided	(70%)	
two	7 (I
# two	10 7 (22 -

Strong dichotomy

From conclusions for BCS sample (Giovannini et al. 2003, 2005, Liuzzo et al. 2009) → 1s is predominant and only 22 % of FRI radio galaxy have 2s jets. In agreement with expectations based on a random orientation for sources with relativistic jets

All FRIs in non cool core clusters have similar pc scale properties

regardless their host galaxy classification

(BCGs or not BCGs)

One sided structures in non cool core clusters are due to Doppler boosting effects

in relativistic, intrinsically symmetric jets

- To 1 - To 1 - Cor - Cor - Cor - Usin - Usin - Evite cluste	Conclusions (Liuzzo et al. 2010) (Liuzzo et al. 2010) Ga are unique class of objects study their po scale properties we define a complete sample taking BGCs in all Abell cluster with DC<3 and aution > 0 study their po scale properties we define a complete sample taking BGCs in all Abell cluster with DC<3 and aution > 0 octer understand we added other BCGs \rightarrow extended sample = 34 BCGs octer understand we added other BCGs \rightarrow extended sample = 34 BCGs octer understand we added other BCGs \rightarrow extended sample = 34 BCGs octer understand we added other BCGs \rightarrow extended sample = 34 BCGs octer understand we added other BCGs \rightarrow extended sample = 34 BCGs octer understand we added other BCGs \rightarrow extended sample = 34 BCGs octer understand we added other BCGs \rightarrow extended sample = 34 BCGs octer tude core duster show 2s jets \rightarrow 24% of BCGs in non cool core clusters show 2s jets other BCS sample as comparison sample, we suggest \rightarrow 2s jets are due to mildly relativistic jets in cool core clusters \rightarrow 2s jets are due to mildly relativistic jets in cool core clusters \rightarrow 2s jets are due to mildly relativistic jets in cool core clusters <td< th=""></td<>
	Liuzzo et al. 2009b A&A, 505, 509L
	Liuzzo et al. 2010 Astroph 1002.1380

IC708 in Abell 1314

The jet is aligned with the kiloparsec structure, has S of 2.48 mJy and an extension of 16 mas from the core.

if form 0. for the second	Peculiar cases of BCGs NGC6047 in Abell 2151	Image: constraint of the constr	observations (e.g EVN)- new 1.6 GHzVLBA observations (July 2010):operly mapundetectedabove $5\sigma = \dots$ mJy/beamundetectedabove $5\sigma = \dots$ mJy/beamundetectioncore core? excludedundetectioncore coordinates? excludedundetectiondiffuse core emission? To check
--	---	---	--

NGC6041A in Abell 2151

NGC 6041A is the BCG of the first main condensation.

In the NVSS image, NGC 6041A shows a WAT structure with angular size of 2.5 arcmin and total flux density of 11.6 mJy.

In our VLBA map, it appears unresolved with a total flux density of 7.83 mJy.

|--|

Hydra A in Abell 780

- cD multiple nuclei- disk of gas(Dimkim 1979)
- → precession
 (Taylor et al. 1990)
 RM > 8000 rad m⁻²
 (Taylor et al. 1993)
 - At pc scale: 2s

CHANDRA + VLA

The comparison sample : Bologna Complete Sample The definition of BCS sample (Giovannini et al. 1990, 2001, 2005, Liuzzo et al. 2009b)	<u>The aim</u> : parsec scale study of statistical properties in different class of sources	<u>The method</u> : definition and observations of sample free from selection effects looking at low frequences samples	If $S \sim v^{-\alpha} \Rightarrow S(app) = S(true)D^{2+\alpha}$ where $D = \frac{1}{\Gamma(1 - \beta \cos \theta)}$ M87 VLA 90 cm	The sample: \rightarrow 94 sources (53 studied) \frown 82 catalog and 3CR catalog with no contraint on nuclear properties	\Rightarrow Criteria: 1) flux density limit > 0.25 Jy at 408 MHz for the B2 and 10 Jy at 708 MHz for 3CR 2) declination > 10 deg	3) galactic latitude $ b > 15^0$ 4) redshift $z < 0.1$	<u>The data</u> : - in this PhD project $\rightarrow 23$ sources with $S_{c, VLA} > 5$ mJy at 5 GHz and 1.6 GHz for 10 sources - 2010 February EVN and VLBA proposal for the remaining 18 sources
--	---	---	--	---	--	--	---

isions	sus Brightest Cluster Galaxies sample	- <u>Detection rate</u> 60 %→ 76% with only radio loud BCGs at kpc scale	 - dichotomy on pc scale structure → 1s in BCGs in non cool core clusters 2s in BCGs on cool core clusters 	- 1 Z-shaped \rightarrow low velocity jets	- 2 evidences of restarted sources and 4 of radio quiet core in radiogalaxies	- kpc and pc structures <u>aligned</u>	- 30% of sources evidence of <u>core variabilty</u> or <u>sub-kpc structures</u>	me cases of sub-kpc structure) similar kinematic properties with FRIs
Conclu	Bologna Complete Sample	- <u>Detection rate</u> high : 97 %	- <u>1s predominant</u> on pc scale \rightarrow random orientation and high jet velocity	- 2 Z-shaped \rightarrow low velocity jets	- 10 % low radio activity state \rightarrow restarted sources	-kpc and pc structures <u>aligned</u>	- 38% of sources evidence of <u>core variabilty</u> or <u>sub-kpc structures</u>	 Similar pc morphologies (sol intermittent activity only one-sided BCGs have

Conclusions

Dense surrounding medium in cool core clusters

NDER CIRCLE	cool core	М _{асо} М ₀ /ут	BOG	Large scale	VLBI	Ref.
A400	N	0.0	3C75A	WAT	one sided	White et al. (1997)
	Z	0.0	3C75B	WAT	one sided	White et al. (1997)
A407	Z	4.6+118	UGC2489	Tail rs	one sided	White et al. (1997)
4539	Z	2.1+62	UGC3274	r adio quiet	ъd	White et al. (1997)
A5@	Z	>5.2+00	NGC2329	WAT	one sided	White et al. (1997)
A576	Z	17+47	CGCG261-059	Tail IS	one sided	White et al. (1997)
A690	z	0.0	В2 0836+29 П	WAT	one sided	Giovamini et al. (2005); White et al. (19
<i>A71</i> 9	Z	3.1 +1.5	NGC2832	r adio quiet	ъ.d.	White et al. (1997)
A1185	Z	0.0	NGC3550	r adio quiet	ъ.d.	White et al. (1997)
A1213	N	0.0	4C29.41	FRI	one sided	White et al. (1997)
A1228	z	1	IC2738	r adio quiet	ъ.d.	
A 1314	z	0.0	IC708	WAT	one sided	White et al. (1997)
	Z	00	IC712	mall WAT	ъ.d.	White et al. (1997)
A1367	Z	2.3 +62	NGC3842	mall WAT	ъ.d.	White et al. (1997)
	Z	2.3 468	302.64	HT	one sided	Lara et al. (1999); White et al. (1997)
A1656	Z	00	NGC4874	mall WAT	one sided	White et al. (1997)
A2147	z	0.0 +14.5	UGCI0143	mall WAT	ъ.d.	White et al. (1997)
A2151	Z	6.3+ <u>86</u> 2	NGC6041	TMAIL WAT	COTE	White et al. (1997)
	z	6.3 + 26.5	NGC6047	compact core+symmetric jets	Ъ.d.	White et al. (1997)
A2162	Z	i	NGC6086	FRI, relic source	рп	
A2197	z	2.4+30	NGC6173	point source	one sided	White et al. (1997)
A2634	z	00	30465	WAT	one sided	Venturi et al. (1995); White et al. (199
A2666	z	0.0	NGC7768	Tail rs	one sided	White et al. (1997)
A3526	z	5.2 403	PKS 1246-410	small tailed rs	one-sided	Taylor et al. (2006); Hudson et al. (200
A262	Y	9.4+21.2	NGC708	double-no core jets	core	White et al. (1997)
A347	SCF	7.8+35	NGC910	r adio quiet	ъ.d.	White et al. (1997)
A426	¥	291^{+27}	3C84	Compact core+Halo	two sided	Taylor et al. (2006b); White et al. (199
A780	¥	222 ⁺⁵⁸	Hydra A	double	two sided	Taylor (1996); White et al. (1997)
A1795	Y	321+166	4C26.42	double	two sided	Liuzzo et al. (2009a), White et al. (199
A2052	Y	2 2 2 2	3C317	bright core+halo (FRI)	two sided	Venturi et al. (2004); White et al. (199
A2152	Y	20	UGC101 87	Tail rs	ъ.d.	White et al. (1997)
A2199	¥	4	3C338	double restarted	two sided	White et al. (1997); Feretti et al. (1993
A2390	¥	247 ⁴⁴	B2151+174	MSO	two sided	Augusto et al. (2006); Allen et al. (200
A2597	>	301+10V	PKS 2322-123	asymmetric radiosonroe (FRT)	two sided	Taylorietial (1999): Chenietial (2007

An investigation of cooling flows and general cluster properties from an X-ray image deprojection analysis of 207 clusters of galaxies

D. A. White,¹ C. Jones² and W. Forman²

¹Institute of Astronomy, Madingley Road, Cambridge CB3 0HA ⁵Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138, USA

Accepted 1997 August 6. Received 1997 July 15; in original form 1996 February 8

I

ABSTRACT

errors in both dimensions of the data. These fits indicate that, in general, the temperatures of clusters are isothermal, and that they have spectral β -values consistent with unity (if the dependence of luminosity on temperature is assumed to Observatory imaging data on 207 clusters of galaxies. The resulting radial profiles for luminosity, temperature and electron density variations are determined from the cluster surface-brightness profiles according to gravitational potential constraints from average X-ray temperatures and optical velocity dispersions. This enables us to determine cooling flow and other cluster properties, such as baryon fractions, Sunyaev-Zel'dovich microwave decrements and Thomson depths. From the results we have compiled a catalogue of the detected cooling flows, and investigated their effects on general cluster properties. To assist in the analysis, we have constructed self-consistent correlations between the cluster X-ray luminosity, temperature and optical velocity dispersion, using 'orthogonal distance' regression to account for In this paper we present an X-ray image deprojection analysis of Einstein be quadratic).

showing higher central densities. This leads to scatter in the luminosity-related correlations within the X-ray luminosity, temperature and optical velocity dispersion plane. The segregation in density also leads to dispersion in other related properties We find that the X-ray luminosity, temperature and optical velocity dispersion relations depend significantly on the cooling flow mass-deposition rate, through characteristic differences in the density profiles. Clusters of similar cooling flow mass-deposition rate exhibit self-similar density profiles, with larger cooling flows such as 'half-light radii' and baryon fractions. The baryon fraction in the cores of cooling flow clusters appears to be higher, but as the density profiles tend to a similar value at larger radii, irrespective of cooling flow property, so too do the baryon fraction profiles appear to rise to a concordant value of greater than 10 per cent at 1 Mpc. Thus this sample indicates that clusters, as a whole, are inconsistent with primordial nucleosynthesis baryon fraction prediction, for a flat universe, of 6 per cent.

Key words: catalogues - galaxies: clusters: general - cooling flows - galaxies: fundamental parameters - intergalactic medium - X-rays: galaxies.

1 INTRODUCTION

The technique of 'X-ray image deprojection' was first used in the study of the Cassiopeia A supernova remnant (Fabian et al. 1980), but its subsequent application to the Perseus

★E-mail: daw@ast.cam.ac.uk © 1997 RAS

cluster (Fabian et al. 1981) showed that it was particularly successful in the analysis of clusters of galaxies, especially those with cooling flows, because of their almost spherically symmetric appearance and highly peaked surface-brightness profiles. A benefit of the deprojection method (especially over detailed spectral analysis) is that it can easily be applied to fainter systems, allowing analysis for

◎ Royal Astronomical Society • Provided by the NASA Astrophysics Data System

tion IOP Publishing doi:10.1088/1742-6596/131/1/012052 The Universe under the Microscope - Astrophysics at High Angular Resolution Journal of Physics: Conference Series 131 (2008) 012052

provided by TeV emission from blazars modeled as synchrotron photons generated in a mildly relativistic sheath inverse Compton scattered off electrons in a high Lorentz factor spine as indicated in Figure 22 (Ghisellini et al. 2005). However, alternatives such as rapid jet deceleration

Figure 22. Inverse Compton scattered TeV photons (red) from a high Lorentz factor spine and initial photons (blue) from a mildly relativistic sheath. (Georganopoulos, Perlman & Kazanas 2005; Kasznas & Georganopoulos 2006) can also generate TeV emission from photons emitted back towards the origin from the slowed jet that subsequently inverse Compton scatter off electrons in the higher Lorentz factor jet nearer to the origin.

Conclusion ė

We now have a reasonable theoretical scenario for the generation and collimation of jets. The scenario suggests a massive black hole surrounded by an accretion disk with jet spine and scenario suggests a massive black hole surrounded by an accretion disk with jet spine and scenario disk, respectively. The jet generated by magnetic fields threading the ergosphere and accretion disk, respectively. The jet generated or only slightly resolved at the highest resolutions available. However, the initial acceleration/collimation region at $10-300R_S$, 1-100millipc, 10μ as – 1mas is resolvable at the highest resolutions available, and the transition region from Poynting flux dominated to What new things can we learn about AGN jets from astronomy at the highest angular resolution? kinetically dominated flow occurs at $\sim 300R_S$, ~ 0.1 pc, $\sim 1m$ as spatial and angular scales. Tasks to be accomplished, roughly from larger to smaller scales and degree of difficulty:

- (1) Locate the base of the kinetically dominated region. This is likely at the modified fast magnetosonic point and marks the outer limit to the transition region.
 - (2) Determine the jet flow/magnetic parameters and structure at the base of the kinetically dominated region.
- (3) Determine the rate/shape of jet collimation out to the base of the kinetically dominated region.
- (4) Determine the jet flow/magnetic parameters and structure in the magnetically dominated acceleration/collimation region.
- (5) Link high energy emission, e.g., TeV emission, to shock structures (if produced in the kinetically dominated super-Alfvénic/magnetosonic flow region) or to magnetic reconnection structures (if produced in the magnetically dominated sub-Alfvénic flow region).

Accomplishing these tasks requires spatial and temporal motion, intensity/spectral and polarization observations at the smallest angular scales.

Suppose we use the image of the M87 jet base at 0.5mas resolution shown in Figure 23 (see also Walker in this proceedings) as a guide. With a black hole mass ~ 3×10^9 solar masses and at a distance of ~ 17 Mpc, $R_S \sim 3\mu$ as and the transition region ~ 1mas, the jet is likely largely kinetically dominated at the image angular scale but should show transverse and

R. J. H. Dunn, A. C. Fabian and A. Celotti 1742

2 THE MODEL

low-energy cut-off in the lepton energy distribution. In this case the self-absorption only depends on the normalization of the relativistic The path-length is X = 2r/8, using the relativistic transformations for a cylindrical geometry. Combining this with equations (1) and (3), places a lower limit in the B-n plane for radiation at frequency

lepton distribution and the magnetic field.

presented in Reynolds et al. (1996) (following Marscher 1987) in order to demonsummarizes the calculations strate the method and define the parameters. This section briefly

2.1 Limits on the magnetic field from SSA

With the assumption that the relativistic leptons have a distribution of Lorentz factors $N(\gamma) = N_0 \gamma^{-2\alpha+1}$, between γ_{max} and γ_{mx} , the spectrum in the optically thin regime is $S_v \propto v^{-\alpha}$. The corresponding relativistic lepton number density, n, is given by

€

 $nB^{(\frac{1}{2}+\alpha)}\gtrsim \frac{2\delta}{3^{(\alpha+1)}\sqrt{\pi}\,g(\alpha)\alpha\gamma_{\min}^{2q}er}\left(\frac{m_{e}cv_{\mathrm{bm}}}{e\delta}\right)^{5/2+\alpha}.$

vm to be self-absorbed in the source,

$$n = \int_{\text{frain}}^{\text{frain}} N(\gamma) d\gamma,$$

The kinetic luminosity of the jet depends on the type of particles present, as well as their energy and number density. In the assumption that all of the energy contained within the jet results in the creation and expansion of the radio bubbles observed within clusters, then the power required to create these bubbles is an estimator of the (average) kinetic luminosity of the jet, that is, $L_K = E_{\text{hubble}} / I_{\text{hubble}}$, where I_{hubble} is the creation time of the bubble. The simplest estimate on the energy required is that $E_{babba} = pV$, where V is the volume of the bubble, and p is the pressure of the surrounding intracluster gas. Taking into account any internal energy of the bubble results in

2.3 Kinetic huminosity

$$2\alpha n = -N_0 \left[\gamma^{-\alpha} \right]_{\gamma_{min}}^{\gamma_{min}}$$
.
Therefore, for $\gamma_{max} \gg \gamma_{min}$ and $\alpha > 0.5$, the lepto

on number density 2 2

$$t = \frac{N_0}{2\alpha} \gamma_{\min}^{-2\alpha}$$
.

Ξ

Initially we assume $\gamma_{\min} = 1$ for the following calculations. For a discussion of the effect of varying y_{ma} see Section 5. The synchrotron flux in the optically thick (self-absorbed) region is independent of the particle density, resulting in an estimate on the

 $B \lesssim 10^{-5} h(\alpha) \theta_d^4 v_m^5 S_m^{-2} \left(\frac{\delta}{1+z}\right) \mathbf{G},$

magnetic field of

$$E_{\text{bubble}} = \frac{\gamma_{\text{R}}}{\nu_{\text{B}} - 1} pV,$$

surrounding the bubbles in the Perseus cluster, Fabian et al. (2006) find that the energy of the post-shock gas is around 2pV. We use $E_{\rm bable}=pV$, although using 4pV does not change the results sigtivistic gas is 4/3, resulting in $E_{\text{tabule}} = 4pV$. Whether the energy contained within the bubble is pV, 4pV or some other multiple of pVis currently uncertain. For example, investigating the weak shock where γ_R is the ratio of specific heat capacities, which for a rela-6 where the v_m and S_m are the frequency (in GHz) and flux density (in Jy) at spectral turnover. θ_d is the angular diameter of the source in milliarcseconds (mas). As the angular diameter may be an upper limit (the core may not be fully resolved) this causes the estimate

on B to be an upper limit. In some cases the source is elliptical, and in these cases the average $\theta_a = \sqrt{\theta_a \theta_b}$, where θ_a and θ_b are the corresponding angular diameters of the ellipse. δ is the relativistic Doppler factor, defined as $\delta = 1/\Gamma(1 - \beta \cos \phi)$ where Γ and β are the Lorentz factor and v/c for the bulk motion of the jet, respecThe observation of compact radio sources with flat spectra, $\alpha_{obs}\sim0$, has been interpreted as the superposition of different SSA components each peaking at different frequencies (Blandford sure the flux density and the size of the component of the jet which

interpolated between the values given where appropriate.

& Konigl 1979). Hence the observations at a given v basically mea-

is becoming self-absorbed at v (in the observer's frame). 2.2 Limits on the magnetic field and number density

tively, and ϕ is the angle between the line of sight and the jet axis. The function, $b(\alpha)$, is tabulated in Marscher (1987) and we have

equilibrium with their surroundings, whereas Reynolds et al. (1996) assumed that they were overpressured by a factor of ~ 3 . Using their source parameters we recover the limits they place on the matter content of the M87 jet (see their fig. 1). In our analysis we assume that the radio bubbles are in pressure nificantly.

 $t_{\text{trackst}} = 2R_{\text{trackst}}/c_s$, where R_{tracksts} is the bubble radius and c_s is the local sound speed, following Dunn & Fabian (2004). There are no sion on time-scales relevant to the evolution of bubbles in clusters see Churazov et al. (2000), Dunn & Fabian (2004) and Dunn, Fabian There are a number of estimates on the bubble time-scales. The most appropriate one for these young bubbles which are (presum-ably) still being inflated by their jet is the sound speed time-scale, indications for strong shocks surrounding the bubbles, which implies that the bubble edges are travelling at less than the local sound speed. It is possible, however, that the bubbles do not grow smoothly, but in fits and starts (Fabian et al. 2005), and as such this time-scale is not a good estimate for the age of the bubble. For further discus-& Taylor (2005).

As mentioned, we assume that the jet is particle dominated (i.e. we neglect the magnetic field contribution) and for simplicity, following other work (e.g. Sikora & Madejski 2000), assume that the protons are 'cold'. Thus the jet kinetic luminosity, including the advected enerov. is

6

$$\sum_{L_K} \approx \Gamma^2 \beta \pi r(Z)^2 nm_6 c^3 \left[\frac{4}{3} (\langle \gamma \rangle - 1) + \frac{\Gamma - 1}{\Gamma} (1 + k_k) \right], \quad (5)$$

where k_a takes into account the effect of hadrons on the rest-mass _ <u>^</u>___

energy (adapted from Schwartz et al. 2006). For electron-positron

This expression for $\kappa(v)$ is valid for $v \gg v_{\min} \sim \gamma_{2mn}^2 v_{\rm B}$, where v_{\min} is the low-energy cut-off in the spectrum corresponding to the

where v_B is the cyclotron frequency and $g(\alpha)$ is the product of gamma functions (of the order of unity for the considered range of

 $\epsilon(v_m) = \frac{3^{(m+1)} \sqrt{\pi} g(\alpha) e^2 N_0}{2} v_{\rm B}^{(2/2+\alpha)} v_{\rm m}^{-(5/2+\alpha)} g^{(5/2+\alpha)},$

references therein

8mec

The jet becomes self-absorbed at an observed frequency, v_m , where $\tau_{yw}(v_m, r) = \kappa(v_m)X = 1$; where $\kappa(v)$ is the synchrotron absorption coefficient, X is the path-length of the line of sight through the jet and r the jet cross-section radius. From Reynolds et al. (1996) and © 2006 The Authors. Journal compilation © 2006 RAS, MNRAS 372, 1741-1748

Figure 1. Constraints on the B-n plane from equations (2) and (4). The expected values for the number density for light and heavy jets from the estimated $L_{\rm K}$ are shown and correspond to the circle and square, respectively. The 'intersection point' (triangle) is the number density required from Tadio observations. This schematic corresponds to Kovalev- $S_{\rm Haws}$ from M87, and for clarity the uncertainties are not shown.