eEVN monitoring of M87

Marcello Giroletti

INAF Istituto di Radioastronomia and G. Giovannini, C. Casadio, M. Beilecke, A. Cesarini, H. Krawczynski

Background: M87, or 3C274, or Virgo A

- Nearby FR1 radio galaxy, hosting massive black hole:
 - d=16.7 Mpc,
 - $M_{BH} \sim 6 \times 10^9 M_{sun}$
 - Scale: $1 \text{mas} = 0.081 \text{pc} = 140 \text{R}_{\text{s}}$
 - Radio power ~10²⁵ W Hz⁻¹ (@408 MHz)

M87: radio jet

- Inner jet shows limb brightened structure, no well defined proper motion
- Superluminal motions are detected downstream the jet with HST/VLA/VLBA
 - eg feature HST-1
 ~0.8" (~70pc) from core

M87 at high energy

- Only resolved in X-rays by Chandra
- Detected -- not resolved -- by Fermi-LAT and TeV observatories (MAGIC, VERITAS, HESS)
- 2005: TeV activity, X-ray, optical, radio flare in superluminal HST-1 (Acciari et al. 2008, Harris et al. 2009)
- 2008: TeV flare, radio core flux density increase, quiescence in HST-1 (Acciari et al. 2009)

How to solve this?!

- Need a coordinated TeV+radio monitoring
- In radio, high sensitivity, good resolution, large field of view are needed
 - EVN (with Shanghai, Arecibo) at 6cm
 - in eVLBI mode to get good time sampling and prompt results
- 6-8 hours observations on 2009 Nov, 2010 Jan, Feb, Mar

EVN images

Clean I map. Array: EVN M87 at 5.004 GHz 2010 Jan 27

EVN images, zoom

Radio-VHE, the campaign

- As we had hoped, TeV flares are detected!
 February 9th (ATel #2431), April 8-10
 (ATel #2542)
- First flare is almost simultaneous (within 24hr) to our 2nd EVN epoch core and HST-1 well behaved
- Additional observations extend monitoring until June

Radio data, basic numbers

No significant increase of flux density in either core or HST-1, so far

Epoch				Core	(:	Jy)	HST-1 Peak ((mJy/bm)
Nov	19	_	2009	1.81	±	0.03	3.5 mJy/beam	n
Jan	27	—	2010	1.81			2.7 VHE acti	ivity
Feb	10	—	2010	1.80			3.0	
Mar	6		2010	1.89			4.6	
Mar	28	_	2010	2.01			3.4	
						VHE	activity Ap	pr. 9th
May	18	—	2010	1.93			2.8	
Jun	9	_	2010	1.93			2.6	

Radio-VHE sum up

- Episodes of very high energy activity detected in 2005, 2008, 2010
- Simultaneous lower energy activity reported in jet feature (HST-1, 2005), core (2008) or none (2010)
- Coincidence or different mechanisms
- What is HST-1 anyway?

HST-1 kinematics

- Superluminal proper motion well measured in HST-1
- Different orientation wrt to inner jet and older observations
- Worth continuing to monitor

Additional data on HST-1 kinematics

- Additional observations available in the literature/archives:
 - Cheung et al. 2007: VLBA @1.6 GHz
 - Chang et al. 2010: VLBA @15 GHz
 - VLA archives at 15-22 GHz
- Post-2005 apparent speed ~2.7c

Take home notes

Clean I map. Array: EVN M87 at 5.004 GHz 2010 Jan 27

Segara Con

300

00

0

00

200

400

(mas)

Relative Declination

0.

• Two competing models: neither is confirmed

-100

(mas)

-200

-300

-400

0 Right Ascension

Map center: RA: 12 30 49.396, Dec: +12 23 28.244 (2000.0)

200

100