

SERPent

Luke Peck, Danielle Fenech, Jack Morford,
Raman Prinja, Jeremy Yates

UCL

SERPent Luke Peck, UCL

Other than a highly contrived acronym...

Automated reduction package for flagging bad data from e-MERLIN.

Written in Python/ Parseltongue.

Consists of two files – a user input file and the main body of code.

Interacts with AIPS software used to reduce radio data from e-MERLIN.

Creates and appends an AIPS FG table to the input data.

Designed for COBRaS – a low source flux continuum project.

Scripted E-merlin RFI-mitigation PipelinE for iNTerferometry

Peck & Fenech 2013 Astronomy & Computing, 2, 54-66

SERPent Luke Peck, UCL

SERPent contains three main passages each designed to
deal with specific problems in the datasets from e-MERLIN:

1. Lovell Stationary scans

2. Zero Level Dropouts (Telescope slew errors)

3. Radio Frequency Interference (RFI) mitigation.

SERPent Luke Peck, UCL

1. Lovell Stationary Scan Removal

Good
visibilities

Bad
visibilities

SERPent Luke Peck, UCL

1. Lovell Stationary Scan Removal

Lovell
Stationary
Scans

Good
visibilities

Bad
visibilities

SERPent Luke Peck, UCL

2. Zero Level Dropout (Telescope Slew Errors)

Zero Level
Dropouts

SERPent Luke Peck, UCL

After Steps 1 and 2

Only good
visibilities
remain

SERPent Luke Peck, UCL

3. RFI-mitigation

RFI has a number of origins from CCTV, mobile phones, microwaves,
aeroplanes etc...

RFI causes an increase in visibility amplitudes which if not removed
causes problems during calibration and imaging.

Lots of RFI at L-band, too much to manually flag. Need automated
procedures like SERPent.

SERPent uses a modified algorithm to that used by the AOflagger for
LOFAR.

SumThreshold method (Offringa et al. 2010, MNRAS, 405, 155).

SERPent Luke Peck, UCL

3. RFI-mitigation – SumThreshold Method

Data is split by baselines, IFs and stokes and arranged into 2D arrays
with the amplitudes sorted in time and frequency.

A threshold is set by the equation:

A test window of a certain size scans across the rows and columns of
the array and if the averaged contents of the window are greater than
the designated threshold, the visibilities are flagged.

The test window grows in size via subset i = {1, 2, 4, 8, 16, 32, 64...}

Each time the window increases in size, the threshold is lowered by:

ii 2log
1

ρ
χχ =

)(1 madnessaggressivemedian ×+=χ

SERPent Luke Peck, UCL

SERPent Luke Peck, UCL

SPPLOT

SERPent Luke Peck, UCL

SPPLOTY

SERPent Luke Peck, UCL

Computational Performance

Memory becomes less important
with increase in number of CPUs

The plateau in performance
occurs because of the
parallelisation method.

SERPent is parallelised by baselines and IFs.

SERPent Luke Peck, UCL

Future Development

1. Flagging Parameters Optimisation

2. Speed Optimisation

3. Incorporating SPLOTY into SERPent

4. Incorporating the Flag Mask into SERPent i.e. Read any FG table
into SERPent

5. Incorporate spectral line masks

SERPent Luke Peck, UCL

1. Flagging Optimisation

Work being done at UCL and Manchester (Ian Harrison).

Optimise the flagging parameters for:

● Each baseline (preferably, or antenna)

● Each regularly observed source (OQ208, 3C286, 0555+398)

● Each observing band (L, C and K)

● Each IF for L-band?

SERPent Luke Peck, UCL

2. Speed Optimisation

For Python 2.7 and higher use the parallelisation module multiprocessing.

Parallelisation Queue method shown to be best (Singh et al. 2013 A&C)

For Python 2.6 and earlier use the existing Fork process in Python.

SERPent Luke Peck, UCL

2. Speed Optimisation

For Python 2.7 and higher use the parallelisation module mprocessing.

Parallelisation Queue method shown to be best (Singh et al. 2013 A&C)

For Python 2.6 and earlier use the existing Fork process in Python.

SERPent Luke Peck, UCL

Source Detection and Flux Extraction Algorithm

● Floodfill algorithm finds islands of pixels.

● The sum of these pixels is the uncorrected flux for that source.

● The RMS of the image is calculated from the noise distribution of the
image and the noise contribution for each pixel is determined.

● This noise is subtracted from every pixel in the island to give the true flux
of the island.

● The PP method assumes islands are a single source, i.e. Does not
consider blended sources.

● Because the PP method analyses each connected pixel in an island, no
source structure is assumed i.e. Gaussian.

SERPent Luke Peck, UCL

Source Detection and Flux Extraction Algorithm

Figure from Hancock et al. 2012

SERPent Luke Peck, UCL

 SNR = 2 SNR = 3 SNR = 4 SNR = 5 SNR = 6

 SNR = 7 SNR = 8 SNR = 9 SNR = 10 SNR = 15

 SNR = 20 SNR = 30 SNR = 50 SNR = 100

Simulated Point Sources

SERPent Luke Peck, UCL

Source Detection Results

 Point Sources Resolved Sources

JMFIT has false positive results for SNR < 4.
PP Method has false positive results for SNR
= 100 (probably due to CLEAN).

JMFIT has false positives for SNR < 6.
PP method showed no false positives.

SERPent Luke Peck, UCL

PP Method Performance

Point Sources

Flux Extraction Position Determination

SERPent Luke Peck, UCL

PP Method Performance

Resolved Sources

Flux Extraction Position Determination

SERPent Luke Peck, UCL

Thank you for listening!

Luke Peck, Danielle Fenech, Jack Morford,
Raman Prinja, Jeremy Yates

UCL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

