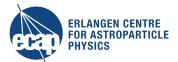
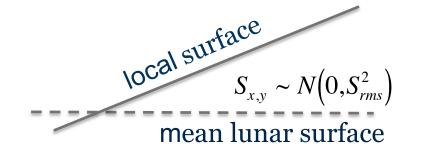
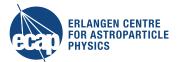

Surface effects

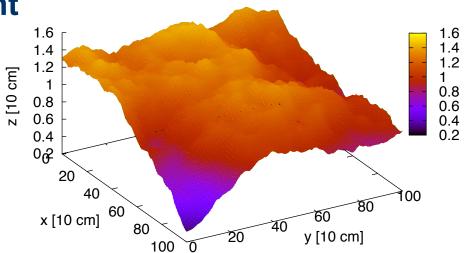

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Clancy James COSMIC 2015, Jodrell Bank, UK

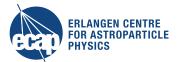



Current treatment

• Step 1: deviate local surface normal $\tan S_{rms} = 0.29 \lambda^{-0.22}$

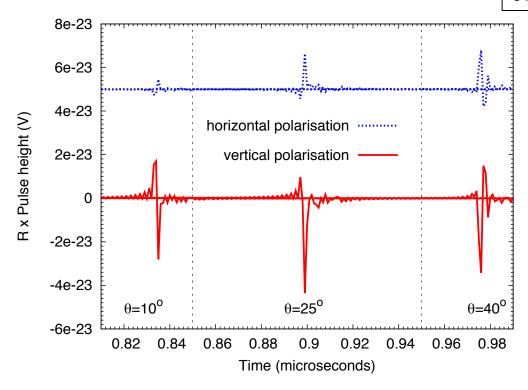

- Treat as simple transmission problem through an infinite plane $t = t_f \frac{n_t \cos \theta_t}{n_t \cos \theta_t}$
 - Use Fresnel transmission coefficients
 - Modify due to 'solid-angle stretching"

- $\frac{d\Omega_t}{d\Omega_i} = \frac{\cos\theta_i}{\cos\theta_t} \left(\frac{n_i}{n_t}\right)^2$
- Problem #1: Retains full coherence ignores small-scale roughness!
- Problem #2: Roughness at small scales modelled at large scale this is optimistic (also ignores diffraction)



My attempt at full treatment

• Model full surface: use facets $\tan S_{rms} = 0.29 \lambda^{-0.22}$

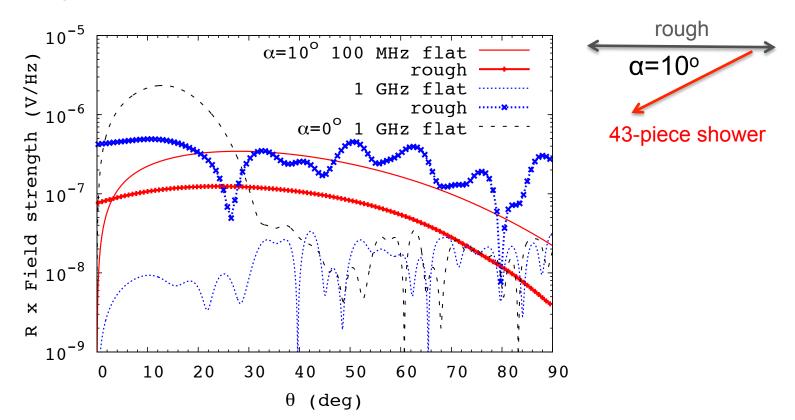

- Calculate nearfield emissions onto surface facets
- Propagate fields through surface facets



Sample results

- Calculations of time-domain pulses (neutrinos)
- Computing time > 1 event / CPU-day (currently)

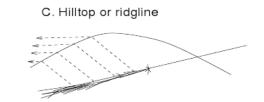
Simulations of pulses over a 1-2 GHz band

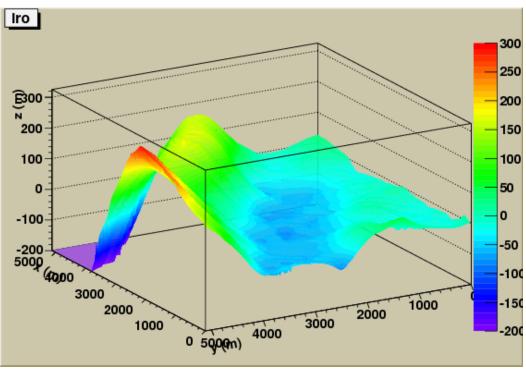


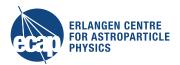

Tentative results: cosmic rays

PRELIMINARY

(numerical dials still need turning)

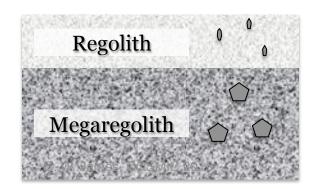

10²⁰ eV hadronic cascade, 10° angle of incidence, shower max 4.6m after initial point

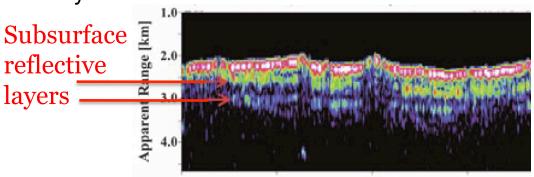


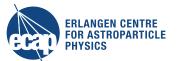

6

Large scale

- Affects initial cosmic ray interactions
- Data from lunar reco orbiter (~5m at poles, few hundred m at equator)
- Not included in models

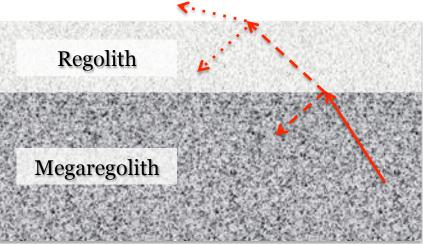


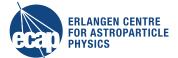

Subsurface issues


- Highlands (white bits):
 - No strong radio-absorbency
 - No sharp boundaries
 - Increased density w depth?

- Mare (grey bits):
 - Strong(er) radio absorbency
 - Dense subsurface rock
 - Possible multiple subsurface layers

SELENE Radar Sounder: Ono et al (2008)





Current treatment (by me)

- Two-layer model (~to regolith and mare subsurface)
- Less dense top layer (~1.8 g/cm³)
- Denser lower layer (~3 g/cm³)
- Allow transmission losses

Summary

- Surface roughness
 - Important at low frequencies too!
 - 100 MHz sees 60% of the roughness of GHz! (10^-0.22)
 - Really need to do this
- Problem: calculations are time-consuming! Limited by submission time on a cluster – and by my contract;-)
- Cosmic rays: large-scale features important
- Low frequencies deeper interactions. Inhomogeneities / subsurface layers important?