Lunar detection of ultra-high-energy cosmic rays and neutrinos with the Square Kilometre Array

(i.e. that chapter from the Sicily meeting)

Justin Bray

May 5, 2015

Lunar detection of ultra-high-energy cosmic rays and neutrinos with the Square Kilometre Array

J.D. Bray*1, J. Alvarez-Muñiz², S. Buitink³, R.D. Dagkesamanskii⁴, R.D. Ekers⁵, H. Falcke³.6, K.G. Gayley³, T. Huege8, C.W. James⁰, M. Mevius¹⁰, R.L. Mutel³, R.J. Protheroe¹¹, O. Scholten¹⁰, R.E. Spencer¹² and S. ter Veen³

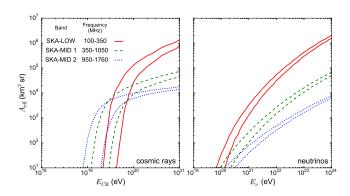
¹Univ. of Southampton; ²Univ. de Santiago de Compostela; ³Radboud Univ. Nijmegen; ⁴Lebedev Physical Institute; ⁵CSIRO ATNF; ⁶ASTRON; ⁷Univ. of Iowa; ⁸KIT; ⁹Univ. of Erlangen-Nuremberg; ¹⁰Univ. of Groningen; ¹¹Univ. of Adelaide; ¹²Univ. of Manchester E-mail: ⁵, bray®soton.ac.uk

Lunar detection of ultra-high-energy cosmic rays and neutrinos with the Square Kilometre Array

J.D. Bray⁻¹, J. Alvarez-Muñiz², S. Buitink³, R.D. Dagkesamanskii⁴, R.D. Ekers⁵, H. Falcke^{3,6}, K.G. Gayley⁷, T. Huege⁸, C.W. James⁹, M. Mevius¹⁹, R.L. Mutel⁷, R.J. Protheroe¹¹, O. Scholten¹⁹, R.E. Spencer¹² and S. ter Veen³

¹Univ. of Southampton; ²Univ. de Santiago de Compostela; ³Radboud Univ. Nijmegen; ⁴Lebedev Physical Institute; ⁵CSIRO ATNF; ⁶ASTRON; ⁷Univ. of Iowa; ⁸KIT; ⁹Univ. of Erlangen-Nuremberg; ¹⁰Univ. of Groningen; ¹¹Univ. of Adelaide; ¹²Univ. of Manchester E-mail: ⁵, bray®soton.ac.uk

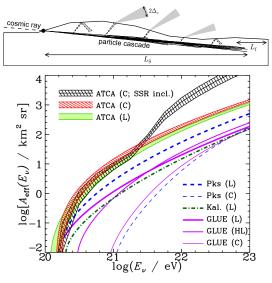
GLUE, LUNASKA, NuMoon, RESUN, LaLuna, etc. ... leading to this.



Contents

- Science prospects.
 - neutrinos
 - cosmic rays
- Engineering.

Feel free to chime in.


Aperture calculation

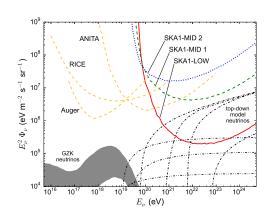
Clancy's Monte Carlo code.

Results compatible* with Olaf's simulations, Ken Gayley's analytic model.

Small-scale surface roughness

James et al., Phys. Rev. D 81, 042003 (2010)

At high frequencies.


Increases threshold; increases aperture.

Omitted from current models.

Potentially huge effect.

Major cause of uncertainty.

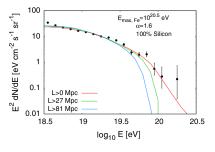
Projected neutrino limits (1000 hrs)

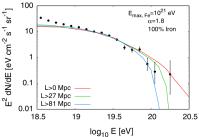
GZK neutrinos: certain* to exist, but way below threshold.

Top-down model neutrinos: detectable, but models constrained by:

- neutrino limits
- photon fraction limits
- composition results

Unlikely to exist.

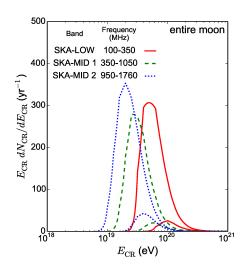



Emphasis on neutrinos.

Original idea from Dagkesamanskii & Zheleznykh (1989):

"... neutrinos and other elementary particles ..."

Cosmic rays


Spectrum at high energies not well-constrained.

Models:

- source distribution
- composition
- injection spectrum

Underlying systematic energy uncertainty $\sim 20\%$.

Detections expected (/1000 hrs):

SKA1-LOW: 2.8-9.4

SKA1-MID1: 2.6-4.9

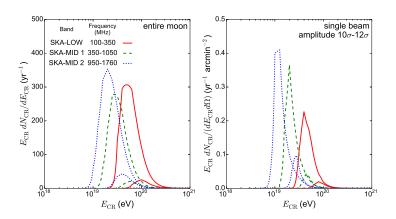
SKA1-MID2: 5.4-7.8

Large model uncertainty, but detection highly likely.

Model discrimination eventually possible.

Resolution

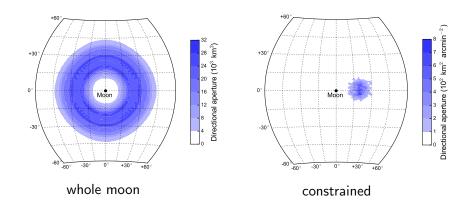
New simulations by Clancy.


Constrain:

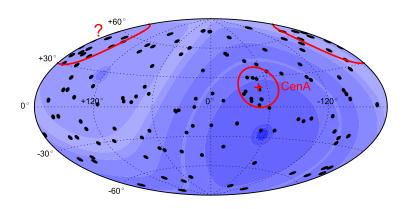
- event position: within 0.1–0.5' (10 km baseline)
- lacktriangle pulse amplitude: $11\pm1\sigma$
- ▶ pulse polarisation: ±5°

Do not constrain:

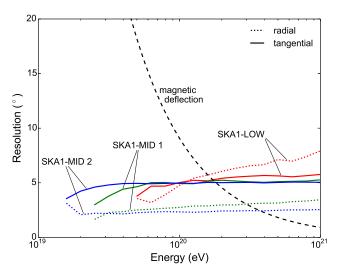
- pulse spectrum
- other pulse structure
- variation over Earth


Energy resolution

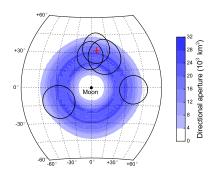
Energy "resolution".


Uncertainty factor: 1.3-1.5

Directional resolution



resolution $\sim 5^{\circ}$


UHE cosmic ray arrival directions

Pierre Auger Collaboration 2010, Astropart. Phys., 34, 314; Telescope Array Collaboration 2014, ApJ, 790, 21

Magnetic deflection is fairly model-agnostic.

Test for source.

Figure of merit:

$$M = \sum \theta^{-2} \Omega(E)^{-1}$$

 $\theta = {\it observed deflection}$

$$\Omega(E) =$$
expected resolution

Simulations for 1000 hrs, targeted.

For TA (northern hemisphere) hotspot.

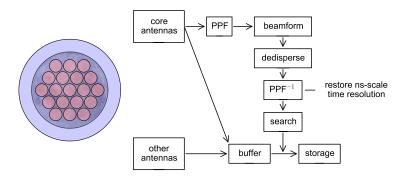
 $M = 5000 \text{ rad}^{-2} \text{ is } > 95\%$ -confidence threshold.

Exceeded in 76% of trials for best-fit spectrum from Taylor et al.

Less for other spectra tested.

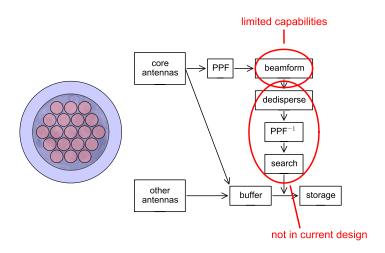
Needs more work. Assumptions:

- local source has typical spectrum (pessimistic)
- composition is energy-independent (optimistic)
- no information from pulse spectrum (pessimistic)
- cosmic ray spectrum known (optimistic)


Various other approximations:

- resolution for fixed location, amplitude, polarisation
- hotspot at fixed distance from moon
- etc.

But: first numerical test of prospects for cosmic ray directional studies with lunar technique.


On the technical side . . .

Real-time: partial sensitivity, 7σ threshold, 1 Hz

Retrospective: full sensitivity, 10σ threshold, 10^{-12} Hz

On the technical side . . .

LUNASKA Parkes: 4 beams, 300 MHz, in 2010

SKA-MID: 500 beams, 800 MHz, in 20??

SKA-LOW: 60 beams, 300 MHz, in 20?? ... parallel dedispersion

Costs

Dedicated hardware: O(\$millions)

1000+ SKA hrs: O(\$millions)

Within an order of magnitude of dedicated facilities.

Need comparable justification.

Costs

Dedicated hardware: O(\$millions)

1000+ SKA hrs: O(\$millions)

Within an order of magnitude of dedicated facilities.

Need comparable justification.

Beamformer

Naively, cost function: $n_{\rm beams} \times \Delta \nu$

Within beamformer capability by that measure.

Constraint: beamformer data output rate?

Costs

Dedicated hardware: O(\$millions)

1000+ SKA hrs: O(\$millions)

Within an order of magnitude of dedicated facilities.

Need comparable justification.

Beamformer

Naively, cost function: $n_{\rm beams} \times \Delta \nu$

Within beamformer capability by that measure.

Constraint: beamformer data output rate?

Engineering Change Proposal

Proposal: modify beamformer to allow this capability.

Avoid "designing out" this experiment.

Conclusions

- Science case is slightly promising.
 - Cosmic ray detection is highly likely.
 - Directional result is moderately likely.
 - Needs more detailed analysis.
- Engineering side is difficult.
 - ▶ Impossible with current beamformer design.
 - Requires additional hardware, and interface with beamformer.