

H₂CO in the Horsehead nebula: Photo-desorption of dust grain ice mantles

V. Guzmán^{1,2} J. Pety² J.R. Goicoechea³ M. Gerin¹ E. Roueff⁴

¹LERMA-ENS, Paris

²IRAM, Grenoble

³CSIC-INTA, Madrid

⁴LUTH, UMR 8102, Observatoire de Paris

YERAC 2011

Outline

- Motivation
- Horsehead nebula
- H₂CO in the Horsehead
- Column densities
- H₂CO Chemistry
- Summary

Motivation

PDR: Photo Dissociation Region

Regions where the chemistry and physics of the gas and dust is dominated by FUV photons (< 13.6 eV).

- Most of the mass in the ISM is found in PDRs.
- They are everywhere.

BUT their chemical richness and physics is poorly known.

(Complex) organic molecules have been observed in PDRs with high abundances. HCO, H₂CO, HCOOH, CH₃OH, ...

• How can these molecules form in such harsh environments?

Complex PDR models and chemical networks need well-defined observations to serve as basic references.

A dark nebula: one of the most famous (photographed) objects in the sky.

ESO

Template PDR:

- Viewed nearly edge-on (Habart et al. 2005).
- Nearby (\sim 400 pc, 10" \leftrightarrow 0.02 pc).
- Illuminated by the O9.5 star σ Ori ~ 3.5 pc away (Radiation field: $G_0 = 60$ in Draine units).
- Gas density is well constrained $(n_H \simeq 10^4 10^5 \text{ cm}^{-1}).$
- \Rightarrow Reference to chemical models.

H₂CO - Formaldehvde

Guzmán et al. accepted for publication A&A

- Triggers formation of more complex molecules (Charnley et al. 1992).
- Accurate probe of the kinetic temperature and density (Mangum & Wootten 1993).
- Rotational lines are easy to detect from ground-base observations. ٠
- It has been observed in HII regions, hot cores, YSO, molecular clouds, comets, PDRs.
 - Diffuse clouds: $\sim 10^{-9}$ (e.g., Liszt & Lucas 1995; Liszt et al. 2006) W33A protostar: $\sim 10^{-7}$ (Roueff et al. 2006)

 - ρ Ophiuchi A cloud core: ~ 5 × 10⁻⁹ (Bergman et al. 2011) Orion Bar PDR: ~ 10⁻⁹ 10⁻⁷ (Leurini et al. 2010)
- H₂CO can be formed both in the gas-phase and on grains surfaces.

IRAM-30m

- Map of the $p-H_2CO3_{03} 2_{02}$ line at 218.2 GHz (12" angular resolution).
- Deep integrations of o-H₂CO and p-H₂CO lines towards the PDR and Core positions.

H₂CO column density

Radiative transfer models

Montecarlo code, non-LTE, non-local Goicoechea et al. (2006)

PDR

- $T_{\rm kin} = 60 \, {\rm K}$
- $n_{\rm H} = 6 \times 10^4 \, {\rm cm}^{-3}$

Best fits:

 $N(o-H_2CO) = 7.2 \times 10^{12} \text{ cm}^{-2}$ $N(p-H_2CO) = 3.6 \times 10^{12} \text{ cm}^{-2}$

 $[H_2CO] = 2.8 \times 10^{-10}$ o/p ~ 2

H₂CO column density

Radiative transfer models

Montecarlo code, non-LTE, non-local Goicoechea et al. (2006)

Cold Core

- $T_{\rm kin} = 20 \ {\rm K}$
- $n_{\rm H} = 1 \times 10^5 \, {\rm cm}^{-3}$

Best fits:

 $N(o-H_2CO) = 9.6 \times 10^{12} \text{ cm}^{-2}$ $N(p-H_2CO) = 3.2 \times 10^{12} \text{ cm}^{-2}$

 $[H_2CO] = 2 \times 10^{-10}$ o/p ~ 3

Meudon PDR model Le Bourlot et al. (1993), Le Petit et al. (2006)

Pure gas-phase models

- $G_0 = 60$ (Draine units)
- $n_H \sim \delta x^4$
- T → thermal balance

Formation: $CH_3 \xrightarrow[]{} H_2CO (PDR and Core)$ Destruction: Photo-dissociation (PDR) Reactions with ions (Core)

Observations v/s model

 $\begin{array}{l} [\text{H}_2\text{CO}]_{model} \approx [\text{H}_2\text{CO}]_{obs} \text{ core } \checkmark \\ [\text{H}_2\text{CO}]_{model} \ll [\text{H}_2\text{CO}]_{obs} \text{ PDR } \textbf{X} \end{array}$

Meudon PDR model Le Bourlot et al., to be submitted

Grain surface chemistry

- Adsorption, desorption and diffusive reactions CO \rightarrow HCO \rightarrow H₂CO \rightarrow CH₃O \rightarrow CH₃OH
- Thermal and non-thermal desorption
- Grains are strongly coupled to the gas ($T_{\rm dust} \leq 20~{\rm K}$)

Gas-phase vs. grain chemistry

 $[\text{H}_2\text{CO}]_{grain-chem} \sim 10^3 [\text{H}_2\text{CO}]_{gas-phase} \text{ (PDR)}$

 \Rightarrow Photo-desorption is needed to explain the observed H₂CO abundance in the PDR.

For the first time we investigate the role of grain surface chemistry in the Horsehead PDR.

- Formaldehyde is found in both the edge of the nebula and in the shielded core with a similar abundance ($\simeq 2 3 \times 10^{-10}$).
- Both gas-phase only and grain surface chemistry models reproduce the observed H₂CO abundance in the dense core.
 Main formation route in the core: gas-phase chemistry.
- In the PDR gas-phase chemistry alone does produce enough H₂CO. H₂CO forms on the surface of dust grains. Then, it is photo-desorbed into the gas-phase.
- These different formation routes are straightened by the different measured ortho-to-para ratio of H₂CO: \sim 3 in the core and \sim 2 in the PDR

Photo-desorption of ices is an efficient mechanism to produce gas-phase H_2CO in the Horsehead PDR.

Next: CH₃OH