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1 Linear Systems

• Where a mathematically linear relationship 

exists between input and output:

– Ideal amplifier

– Ideal transducer

– Radio astronomy receiver!

• Note a detector  e.g. a square law or power 

detector                 is distinctly non-linear

• The Transfer function H(p) relates input to 

output for a linear two-port
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1.1 Linear Two-port Transfer 

function
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Note if p = jω then H(jω) gives the frequency response:

real and imaginary parts --- amplitude and phase response.

p notation (s in some books) comes from assuming solution to a differential

equation describing the system is of the form Vo(p)= Vo ept   



Example: RC circuit
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1.2 Time response
• Step response  H(t)  Heaviside’s Step 

function  = 1 (t>0), = ½ (t=0), =0 (t<0)

– useful for describing causal signals

• Impulse response δ(t)=0 t≠0, area=1

• Related by the integral

( ') ' 1  if t>0 and 0 if t<0
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For the RC circuit
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1.3 Poles and Zeros
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E.g. for the RC circuit: has a pole at p=-1/RC and a zero at infinity
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A general transfer function
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 so the poles and zeros are either on

 the real axis or occur in complex pairs on an

 Argand diagram (Hermitian property) 
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1.4 Transforms

Fourier transform relates time and frequency domains

(e.g. Bracewell)
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Transforms (2) :

• Laplace transform used in signal analysis since 

causal  (no signals for t<0)

( ) ( )

Inverse:
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- complex integration needing calculus of residues

actually not so useful.
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Both transforms relate the time and frequency response, though the

Laplace transform is more directly related to the transfer function 



2. Sampled Data

• ADC usually converts an incoming signal to digital values at a 
constant rate – the sampling rate  (e.g. 4 Gsamples/sec in e-MERLIN 
EVLA and ALMA per channel)

• Number of bits important (1, 2, 3, 6, 8, 14)

• A wide variety of types available – SKA needs few (4??) bits but high 
speed (several Gs/s) and low power

• Sampled at a rate  >2 highest frequency in the signal – otherwise loss 
of information – Shannon sampling theorem. 

• Nyquist rate = 2 x bandwidth of signal 

• Suppose we have a set of values of a sampled voltage [v]:

v0  , v1, v2 , v3   , v4 , etc. sampled at a rate 1/T, T=the sampling period

• This forms a time series   . . . . . . . . . . . . . . . A sequence of values



2.1Time Series and the Z transform
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The times series can  be written:
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Introduce a new variable     then we have
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This is the z transform of the time series
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2.2 Shift operators
Supposed p has a real and imaginary parts:

 then 

 represents a phase shift corresponding to a time delay of 

 represents a time advance of 

So  is a shift operator, advanc
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 and  is a backshift operator.

In summary the z transform is a sequence of samples [v] is
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Note – we have poles and zeros on the z-plane, just like the p plane



3. Digital Signal Processing

• Fourier transform (useful for continuous 
signals) reduces to the z transform when 
we have discrete data – we will see later 
how this can be used

• Obvious forms of analysis – averaging of 
the data – gives data reduction

• Two main types:

– Boxcar averaging

– Running average



3.1 Boxcar Averaging

• Each boxcar contains m data points

• Gives an average yn for the nth box

• For a series of values [x] (instead of v now – since could be 
anything)
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3.2 Running (moving)  average

• An example of a digital filter
• Impulse response:

– Input is hk = 1 for k=0, hk=0 for k≠0
– Output becomes:
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E.g. a 4 point running average:
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Running average (2)

 1 2 3

The Z transform for this filter is by inspection
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Transfer Function of such a filter with a frequency response

( )  with Gain G and phase :
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3.3 Signal Flow Diagram

• Each z-1 block is a back shift i.e. a delay of one sample 
period (T) – a shift register

• Known as a Transversal Filter

• If a finite number of elements – gives a Finite Impulse 
Response (FIR) Filter

+ + +

0.25 0.25 0.25 0.25

Z-1 Z-1 Z-1



3.4 Recursion and filters

1 1

Suppose for exmple we have a response where

0.3

this is recursive, and produces an Auto Regressive time series

Note this is a difference equation.

The impulse response is infinite ( asympto

k k k ky x x y   

tic to 0)

 and produces an Infinite Impulse Response (IIR) filter.

---FIR filters can be recursive or non-recursive

---IIR filters are always recursive, use relatively few poles

    but need high accuracy
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 (bits) 

In general we can write:

which is a digital filter, but also represents an auto regressive

 moving average (ARMA) time series :::
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3.5 General transfer function:
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Transfer function for the general digital filter is:

( )   with a frequency response
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4.DSP in Practice
• FIR filters in common use– see handout for an 

example. Can have large number of elements – 150 
common 

• Simple averaging commonly used in simple 
processing

• Need for spectral data:

– Use Direct Fourier Transform (DFT)

– Fast Fourier transforms used for large (>32) 
numbers of elements (see refs) when speed is a 
premium
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• Data windows in measuring spectra – Hanning, 

Hamming, and Tapered rectangular windows (handout)

• Decimation:

– Reducing data rate per channel

– Makes use of parallel structures in hardware

– Demultiplexing

• Decimation plus FIR filters and FFT --- polyphase filters

• Delay, Phase rotation, frequency shifting, correlation

• Formatting, packetisation

• In practice use design tools: Simulink, Matlab, etc.

• Can be implemented on specialist DSP chips or FPGAs

4.1 DSP uses:



Motorola evaluation board

Chip used in a nome cinema

sound system

Xilinx Spartan FPGA

CT1100 digital radio NEC audio DSP chip

4.2 Some examples



Uses low power Texas DSP chip (Electronics Design March 2006)

Chip does decompression, de-interleaving, decoding and demodulation

High Definition Radio
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Questions?



Problems for the Student:

1. Write down the first five terms of the transfer 
function for a FIR filter having an impulse 
response h(t)=exp(-t/T), where T is the 
sampling interval. Sketch a signal flow diagram 
for the filter

2. Write down the excursion relation (a differnce 
relation) for the impulse response in Q1 and 
hence the transfer function for an IIR filter

3. A random signal of variance σ2 is averaged by 
a) a boxcar integrator of length 5 b) a FIR filter 
as in Q1. Calculate the output standard 
deviation.


