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1 Linear Systems

* Where a mathematically linear relationship
exists between input and output:
— ldeal amplifier
— ldeal transducer
— Radio astronomy receiver!

* Note a detector e.g. a square law or power
detector v «v? IS distinctly non-linear

« The Transfer function H(p) relates input to
output for a linear two-port



1.1 Linear Two-port Transfer
function

Vi(p) Vo(P)
" H(p) g
Y
- 5)

Note if p = jw then H(jw) gives the frequency response:
real and imaginary parts --- amplitude and phase response.

p notation (s in some books) comes from assuming solution to a differential
equation describing the system is of the form V (p)=V, e



Example: RC circuit

C dVout _I_Vout — Vin
dt R R

Try a driving function
V. =Ve"

with solution of the form
Vou :Voutept
gives
V 1

= =H(p)

V. 1+ pRC



1.2 Time response

« Step response H(t) Heaviside’s Step
function =1 (t>0), = ¥2 (t=0), =0 (t<0)

— useful for describing causal signals
» Impulse response 5(t)=0 t#0, area=1 ‘
« Related by the integral

j s(t)dt'=1 if t>0 and =0 if t<0

= H(t)
SO We can write NB H(t) # H(p)



For the RC circuit

\Y

Step response
~t
Vo (t) = L€ )H(t) ﬁ—

Impulse response

dv, 1 e
h(t) =—2 = eRCH() + (1—eRC)o(t
(t) ey (t) +( )o(t) h

-t
~ 1 6% fort>0, —0fort<o \

RC

t




1.3 Poles and Zeros

LV _
E.g. for the RC circuit: V. "TroRe has a pole at p=-1/RC and a

A general transfer function

zero at infinity
Imag

a p"+a  p"t+....+ap +a
H(p): mpn m—1pn_1 ail:l) 0
b.p"+b _,p" +....... +b,p”+Db,
i (pP-2)(p-2,)...(P—2,)
(P=0a)(P=0)...(P—=0y)
has m poles and n zeros. The coefficients a, b are

always real so the poles and zeros are either on
the real axis or occur in complex pairs on an
Argand diagram (Hermitian property)

Real

P plane



1.4 Transforms

Fourier transform relates time and frequency domains
(e.g. Bracewell)

G(f)= j g(t)e 2" "dt
with the inverse

g(t) = je(f)e”mdf



Transforms (2) :

« Laplace transform used in signal analysis since
causal (no signals for t<0)

F(p) =T f (t)e "dt

Inverse:
1 o+ Joo
f(t)=—— | F(p)e"dp
27t |
- complex integration needing calculus of residues

actually not so useful.

o—joo

Both transforms relate the time and frequency response, though the
Laplace transform is more directly related to the transfer function



2. Sampled Data

ADC usually converts an incoming signal to digital values at a
constant rate — the sampling rate (e.g. 4 Gsamples/sec in e-MERLIN
EVLA and ALMA per channel)

Number of bits important (1, 2, 3, 6, 8, 14)

A wide variety of types available — SKA needs few (477?) bits but high
speed (several Gs/s) and low power

Sampled at a rate >2 highest frequency in the signal — otherwise loss
of information — Shannon sampling theorem.

Nyquist rate = 2 x bandwidth of signal

Suppose we have a set of values of a sampled voltage [v]:
Vo, Vi, V,, V5 , V,, etc. sampled at a rate 1/T, T=the sampling period

This forms atimeseries ............... A sequence of values



2.1Time Series and the Z transform

The times series can be written:

V=V, o(t)+v,o(t—T)+Vv,0(t—2T)+Vv,o(t—3T)+.......
The Laplace transform of this is

V(p)=v,+ve " +v,e?P +v,e”P +....

Note the Fourier transform is

2T Ly e 4L

V(w) =V, +ve " +v,e
Introduce a new variable z=e"" then we have
V() =V, +V,2 +V, 272 +Vv, 270+

This 1Is the z transform of the time series



2.2 Shift operators

Supposed p has a real and imaginary parts:
P=c+ jothenz=e" =¢e7 "
e 1T represents a phase shift corresponding to a time delay of T

+ joT

e represents a time advance of T
So z iIs a shift operator, advancing by T

and z* is a backshift operator.
In summary the z transform is a sequence of samples [v] Is

V(z)=) v,z

If z=e!“" then V (z) gives the frequency spectrum of the sampled
voltage

Note — we have poles and zeros on the z-plane, just like the p plane



3. Digital Signal Processing

* Fourier transform (useful for continuous
signals) reduces to the z transform when
we have discrete data — we will see later
how this can be used

* Obvious forms of analysis — averaging of
the data — gives data reduction
 Two main types:

— Boxcar averaging
— Running average



3.1 Boxcar Averaging

n=0 n=1 n=2

—  X1--Xp = Xmatre-Xmam = Xomp1eeeeXszm

« Each boxcar contains m data points
« Gives an average y,, for the n" box

» For a series of values [X] (instead of v now — since could be
anything)

m
yn — Z an+k
k=1



3.2 Running (moving) average

E.g. a 4 point running average:

1
Yo = Z(Xk TXa T X T Xk—3)

« An example of a digital filter

* Impulse response:
— Inputis h, = 1 for k=0, h,=0 for k#0
— Output becomes:

h
Y, =0.25(1+0+0+0) =0.25 k ¥ x x X
y, =0.25(0+1+0+0)=0.25 NEVEEVIRY
y, =0.25
y, =0.25

Impulse response of a moving
y, =0 etc. average filter



Running average (2)

The Z transform for this filter is by inspection
H(z) = %(l+ 2 +272+27%) and this is the
Transfer Function of such a filter with a frequency response

H(jow)= ) he ™ with Gain G and phase &:

K=—00

G(w)=|H(jo)| and O(w)=arg(H(jo))



3.3 Signal Flow Diagram

Z1 e |z

025 [ ] 0.25 [ ] 025 [ | 025 [_]

« Each z* block is a back shift i.e. a delay of one sample
period (T) — a shift reqgister
 Known as a Transversal Filter

 If a finite number of elements — gives a Finite Impulse
Response (FIR) Filter




3.4 Recursion and filters
Suppose for exmple we have a response where
Yie =% =X +0.3Y,
this is recursive, and produces an Auto Regressive time series
Note this is a difference equation.

The impulse response is infinite ( asymptotic to 0)
and produces an Infinite Impulse Response (lIR) filter.

---FIR filters can be recursive or non-recursive

---1IR filters are always recursive, use relatively few poles
but need high accuracy (bits)
In general we can write:

Y = Z X, + Z by,
1 1

which is a digital filter, but also represents an auto regressive
moving average (ARMA) time series :::



3.5 General transfer function:

Transfer function for the general digital filter is:

D gz
H(z)=—= with a frequency response
1-> bz
=1
i _e—ja)Ti

H(Jo) =

n

a
0
1-2
=1

I
— joTl
be



4.DSP In Practice

* FIR filters in common use— see handout for an
example. Can have large number of elements — 150
common

« Simple averaging commonly used in simple
processing

* Need for spectral data:
— Use Direct Fourier Transform (DFT)

G(f) =Zn:gk(cos(27szT)+ jsin(27 fkT)

— Fast Fourier transforms used for large (>32)
numbers of elements (see refs) when speed is a
premium



4.1 DSP uses:

Data windows in measuring spectra — Hanning,
Hamming, and Tapered rectangular windows (handout)

Decimation:

— Reducing data rate per channel

— Makes use of parallel structures in hardware

— Demultiplexing

Decimation plus FIR filters and FFT --- polyphase filters
Delay, Phase rotation, frequency shifting, correlation
Formatting, packetisation

In practice use design tools: Simulink, Matlab, etc.

Can be implemented on specialist DSP chips or FPGASs



4.2 Some examples

Chip used in a nome cinema
sound system

Motorola evaluation board

-t '.'.\‘.‘..;_;._.-:,-;.’.j,._. = ~g-
mL o (L ' . NEC JAPAN
Y ot = d o~ DB1335F1 237
b5y R & L) S L g™
» LR
ﬂ} N p—
-, . - - T -

CR{1] [- ot : Xilinx Spartan FPGA
T | =T

LR R e A% &}

CT1100 digital radio NEC audio DSP chip



High Definition Radio

AM antenna

FM
antenna

Y

Embedded controller

LCD display

Power

ampiiers

Speakers

3. Ina typical HD Radio receiver, the partitioning of the blocks is a function of the chips.

Uses low power Texas DSP chip (Electronics Design March 2006)
Chip does decompression, de-interleaving, decoding and demodulation
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Problems for the Student:

1. Write down the first five terms of the transfer
function for a FIR filter having an impulse
response h(t)=exp(-t/T), where T Is the
sampling interval. Sketch a signal flow diagram
for the filter

2. Write down the excursion relation (a differnce
relation) for the impulse response in Q1 and
hence the transfer function for an IR filter

3. Arandom signal of variance o2 is averaged by
a) a boxcar integrator of length 5 b) a FIR filter
as in Q1. Calculate the output standard
deviation.



