SKA-VLBI Update

Zsolt Paragi (JIVE) SKA VLBI Working/Focus Group

2017 September 12

SKA-VLBI Working/Focus Group

- > Technical definition of VLBI for phase-I SKA components
- > Science priorities for SKA-VLBI: We are fully science driven!
- > Formal WG since 2015 (co-chairs: Cormac Reynolds CSIRO, Zsolt Paragi JIVE)

2017 September 12

VLBI Scientist at the SKA HQ

Jumping JIVE project, SKA-VLBI WP funded position
 Cristina Garcia-Miro started 1 August 2017

2017 September 12

VLBI with the Square Kilometre Array

> Ultra-sensitive VLBI allowing access to the Galactic Centre and the Souther Sky

"Very Long Baseline Interferometry with the SKA", Paragi et al. 2015, SKA Science book (Mainly focusing on SKA1-MID)

2017 September 12

Highest Priority Science Objectives & VLBI

	Science Goal	SWG	Objective	SWG Rank	VLBI with:
	1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3	
	2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3	
	4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3	
€	5	Pulsars	High precision timing for testing gravity and GW detection	1/3	LOW/MID
▶)	13	НІ	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5	LOW/MID
	14	НІ	High spatial resolution studies of the ISM in the nearby Universe.	2/5	
	15	НІ	Multi-resolution mapping studies of the ISM in our Galaxy	3/5	
•	18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State		MID
)	22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5	MID
	27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5	
	32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5	
	33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5	
€	37 + 38	Continuum	Star formation history of the Universe (SFHU) – I+II. Non-thermal & Thermal processes	1+2/8	MID

> While not directly visible, VLBI is fundamental to some of the SKA HPSOs

> Also note: VLBI Science = SKA2 Science!

2017 September 12

(-

-

(=

Working Group progress so far

- Input to L0 Science Requirements, Baseline Design,
 L1 Technical Requirements
- Science priorities: pushing for Band 5 (~4.6-12 GHz)
- Engineering Change Request Proposal:
 VLBI capability for LOW (Evan Keane et al. 2016, ECP160040)

Fringes between GMRT and MWA Franz Kirsten, SKA 2016 meeting, Goa

2017 September 12

Cost Control Project

SKA Board 18-19 July 2017:

- > Deployment Baseline vs. Design Baseline
- > Band 5: deploy half of the receivers initially

	Design Baseline	Deployment Baseline
SKA1-Mid		
No. dishes	133	130
Max. Baseline	150 km	120 km
Band 1 Feeds	133	130
Band 2 Feeds	133	130
Band 5 Feeds	133	67
Pulsar Search (PSS)	500 nodes	375 nodes
SKA1-Low		
No. stations	512	476
Max. Baseline	65 km	40 km
Pulsar Search	167 nodes	125 nodes
Common		
Compute Power	260 PFLOPs	50 PFLOPs

2017 September 12

VLBI with SKA1-LOW

> HI absorption systems at high redshift

- To resolve background source or absorber
- HPSO#13 for MID; complementary work on LOW

> Pulsar scintillometry

- ISM as 10-50 AU scale interferometer (picoarcsec resolution)
- Parallax distance (related to HPSO#4 on pulsar timing)
- > AGN jet termination hot-spots with VLBI to reveal their physics

Transient localization

• Localize FRB within the host galaxy with ~40 mas resolution (HPSO#18)

NO SIGNIFICANT CCP IMPACT

2017 September 12

VLBI with SKA1-MID

- SKA1-MID baselines up to 120-150 km
- SKA-VLBI baselines up to ~10000 km

a range of angular scales, but, a limited number VLBI phase-centres

• Full SKA goal: all angular scales, mas imaging of the full FoV

2017 September 12

VLBI with SKA1-MID

Phase-up inner 4km core (~70% of collecting area)

- Phasing-up longer baselines (>10 km) will have difficulties (coherence loss)
- It will also severely limit the FoV of a single beam

Besides basic beam-forming and other basic technical requirements:

Requires simultaneous beam-formed and SKA1-MID products

- Range of angular scales for transformational science!
- For excellent calibration of the VLBI products

2017 September 12

VLBI with SKA1-MID

Pulsar astrometry: HPSO#5

- Multi-beam calibration, precision ~10 µas and below!
- Requires Band 5 for GC pulsars

Proper motion and parallax of stars/clusters: HPSO#26

- <u>Methanol maser</u> for high-mass, continuum for low-mass
- 6D tomography of spiral arms

HI absorption: HPSO#16

- AGN feedback, Band 2, 1
- Continuum surveys
 - AGN vs. (nuclear) SF beyond *z* > 0.1
 - Cosmology with gravitational lensing

Transient localization and imaging, HPSOs#18-19

- Synchrotron (galactic/extragal), ToO, trigger
- Localize FRB within their host on sub-pc scales

BAND 5 REDUCTION SIGNIFICANT IMPACT

)

2017 September 12

Towards a VLBI Network in Africa

- Jumping JIVE supports AVN telescope fringe tests and training in AVN countries
- > Kuntunse in Ghana produced first fringes this summer

2017 September 12

Transformational Science: Fast Radio Bursts

Chatterjee et al. 2017, Tendulkar et al. 2017, Marcote et al. 2017

- > <u>One of the highest priority science cases for the SKA</u>: FRB localization
- > VLA and EVN breakthrough result open up a new era in fast transient research
- Persistent radio source: young SLSN hiding a magnetar? Metal-poor host would not be unexpected

2017 September 12

Transformational Science: Fast Radio Bursts

Bassa et al. 2017

- > <u>Super-SKA resolution</u>: Great potentials for e-MERLIN (with the LT!) and EVN!
- Note also e-MERLIN surveys may reveal a great number of peculiar objects: It is not just SF/AGN out there in the sub-mJy source population!

2017 September 12

The need for e-MERLIN – EVN integration

Hickson Compact Group J0959+1259

- > EVN can survey ~large FoV; but misses short spacings to get the full picture
- EVN-e-MERLIN would offer a unique range of uv-spacings to study Low-Luminosity AGN and their feedback on their hosts

2017 September 12

Conclusions

- SKA-VLBI is fundamental to a number of high priority SKA science objectives
- Simultaneous SKA1-MID data provide short spacings to calibrate SKA-VLBI data
 - e-MERLIN can do the same + forming baselines across the two arrays will allow unique science (even in the SKA era)
- I propose we dedicate significant time to joint EVN-e-MERLIN operations, to complement shallow/deep SKA1-MID surveys, and to do transformational transient science