The University of Manchester Jodrell Bank Observatory

Star-formation Across Cosmic Time: Initial Results from the e-MERGE Study of the µJy Radio Source Population

e-MERLIN and the EVN in the SKA Era

Tom Muxlow, Alasdair Thomson, & Nick Wrigley JBCA Manchester for the e-MERGE Consortium

JBO 11th September 2017

MANCI

e-MERGE Survey

Tier 1 – Deep high resolution imaging of the µJy radio sources in GOODS-N
 →Imaging star-formation in great detail at lower frequencies
 → Precursor of SKA1-Mid deep studies in Band 5.....

- \rightarrow Characterise the µJy radio source population
- \rightarrow Investigate AGN/S-F interaction and feedback in detail

Addressing STFC Science Challenges A5, A6, D3

Tier 1:

L-Band: Deep 0.2 sq deg – Central 12' $1\sigma \sim 500$ nJy/bm Outer 30' annulus $1\sigma \sim 1\mu$ Jy/bm C-Band: Mosaic of the inner 12' field (50mas)

In full 30' field ~1500 AGN and ~3100 S-F galaxies complete to ~6 σ [DR-2] – 2018/2019

2017 → Interim data release [DR-1] with:
L-Band: 25% e-MERLIN data + JVLA over central 12' field → 1σ~1.5µJy/bm (in prep) JVLA L-Band 30' field ✓
C-Band: JVLA mosaic of central region ✓
Detailed investigation of >500 SF galaxies and AGN in 12 arcmin central region
This talk: L-Band images from an interim sample of 248 source complete to 6σ
L-Band images presented from 90 hrs of e-MERLIN data - 12' field - 1σ~2.5µJy/bm

Luminous Classical Starbursts

Classical Star-forming Galaxies: Radio emission from central region of $10^{10} M_{\odot}$ dust obscured irregular galaxy at z=0.422 – No compact emission detected $L_{1.4} = 3.8 \times 10^{22} W/Hz \rightarrow Star-formation rate 9 M_{\odot}/yr$

(>5 M_☉ assuming Salpeter IMF)

Extended steep-spectrum starburst ($S_{1.4} = 45 \mu Jy$)

SFG Radio Structures

Radio emission from central region of $10^{11}M_{\odot}$ Seyfert-2 galaxy – Nuclear emission + extension \rightarrow Star-formation rate 42 M_{\odot}/yr

Seyfert-2 galaxy, faint Chandra detection \rightarrow AGN – but radio quiet?

AGN or nuclear starburst? – Resolved by e-MERLIN, no compact component \rightarrow Nuclear starburst

SFG Radio Structures

Malmquist bias since SFGs containing nuclear starbursts are more luminous systems – although some extended-only SFGs are still found in high redshift systems

Initial Results From Interim Images: – From Nick Wrigley's PhD Work

Sample of 248 detected sources within central 12' field from ~90 hrs of data. Assign probabilities of being AGN or SF from radio structures and spectral properties...

Initial Results From Interim Images:

- From Nick Wrigley's PhD Work

Sample of 248 detected sources within central 12' field from ~90 hrs of data. Assign probabilities of being AGN or SF from radio structures and spectral properties...

Sub-mm source SMMJ123634+621241 (SCUBA 850.7)

Sub-mm source SMMJ123635+621424

e-MERGE L-Band:

 shows nuclear starburst + fainter emission extending across face of Seyfert-2 galaxy

e-MERGE L-Band:

shows nuclear starburst + fainter emission
 extending across face of Seyfert-2 galaxy

1

62 14 26.5 **Dusty nucleus** with blue UV 26.0 emission from 25.5 outer galaxy arms / ring. 0 25.0 24.5 0 0 24.0 23.5 23.0 22.5 **Radio overlies** eMERLIN 1.4GHz galaxy but OVLA 1.4GHz 22.0 extended at $PA \sim 45^{\circ}$ 21.5 12 36 35.9 35.8 35.4 35.3 35.2 35.7 RIGHT ASCENSION (J2000) $S_{850}=5.5$ mJy + Radio \rightarrow S-F rate >1000 M_o/yr

SF ~ equally distributed between nuclear and extended components

JVLA 1.4GHz image confirms e-MERGE asymmetric structure PA – with peak to NE of central component

JVLA 10GHz image confirms central star-burst PA agrees with e-MERGE fitted angle – and aligns with outer

Radio emission not strongly correlated with optical UV?

No compact component \rightarrow extended nuclear starburst

S-F triggered by previous AGN-jet activity, now ceased?

AGN-jet emission – but must be core-less in the radio?

JVLA at 10GHz detects only the central nuclear starbursts / merging cores in star-forming galaxies

- and the inner corejet structures in AGN systems

Sub-mm source SMMJ123711+621331

 $\begin{array}{l} \mbox{Steep-spectrum (α=0.75$) merging system with} \\ \mbox{star-formation + a nuclear starburst (160x90mas)} \\ \mbox{S}_{1.5GHz} = 130 \mu J y \quad \mbox{S}_{10GHz} = 8 \ \mu J y \end{array}$

Radio \rightarrow S-F rate >1000 M_{\odot}/yr

Steep-spectrum (α =0.75) merging system with star-formation + a nuclear starburst (160x90mas) S_{1.5GHz} = 130µJy S_{10GHz} = 8 µJy

Redshift corrected colours show 2 merging dusty SF galaxies + blue object which may be foreground

Radio \rightarrow S-F rate >1000 M_{\odot}/yr

0.5

Steep-spectrum (α =0.75) merging system with star-formation + a nuclear starburst (160x90mas) S_{1.5GHz} = 130µJy S_{10GHz} = 8 µJy

Redshift corrected colours show 2 merging dusty SF galaxies + blue object which may be foreground

Radio → S-F rate >1000 M_☉/yr

JVLA at 1.5GHz confirms e-MERGE structure and LAS

JVLA at 10GHz detects only the compact nuclear starburst

Steep-spectrum (α =0.75) merging system with star-formation + a nuclear starburst (160x90mas) S_{1.5GHz} = 130µJy S_{10GHz} = 8 µJy

Redshift corrected colours show 2 merging dusty SF galaxies + blue object which may be foreground

Radio → S-F rate >1000 M_☉/yr

JVLA at 1.5GHz confirms e-MERGE structure and LAS

JVLA at 10GHz detects only the compact nuclear starburst

No spectral steepening found in extended component

Some concluding thoughts...

 \rightarrow At high z, JVLA 10GHz is insensitive to steep-spectrum extended S-F & needs very deep imaging to compensate.

 \rightarrow At high z, JVLA 10GHz images contain substantial thermal emission

 \rightarrow Low frequency high resolution studies are required to provide the complete picture of high redshift star-formation activity

- →1.5GHz images may show older S-F activity
 check for spectral steepening at higher frequencies
- →Most radio-loud AGN are simple core-jet systems

 \rightarrow Classical starbursts (Super M82s) dominate at z<1 (Median z~0.8)

 \rightarrow For z>0.7 nuclear starbursts appear more common

→Many sub-mm sources show nuclear starbursts + extended emission. No radio AGN cores seen, but do radio structures contain remnant emission from past AGN-jet activity?

- need the initial release deeper study on many more objects