

The next decade of VLBA developments W. F. Brisken

The Very Long Baseline Array

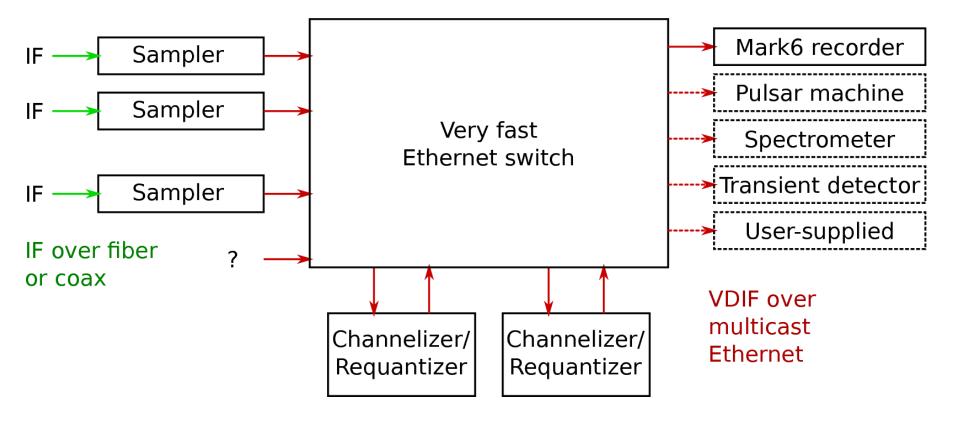
The Long Baseline Observatory

A short history

- Events led to redefinition of NRAO to exclude VLBA and GBT
 - NSF recompetition for NRAO management
 - VLBA and GBT identified as targets for NSF divestment (2012)
- Since then...
 - AUI won NRAO recompetition
 - US Naval Observatory became 50% partner in operation of the VLBA; 50% of time remains for Open Sky observing
 - LBO was formed as organization that operates the VLBA
 - GBO likewise formed to operate GBT
 - AUI managing NRAO, LBO and GBO
 - Near-term future of the VLBA looks solid
 - Funding level adequate to maintain current level of operations
 - Future upgrades to the facility are being planned

Upgrades: what does the future hold?

- In early part of past 10 years:
 - 4-fold increase in bandwidth
 - Improved correlator capabilities
 - New high-sensitivity C-band receiver enabling access to more spectrum
- In last 5 years:
 - No major projects (funding inhibited by divestment threat)
 - Attention spent on modernizing control system, stabilizing operations
- In next 5-10 years:
 - 8-fold increase in bandwidth?
 - New receiver?
 - Replace hard-disk recording with electronic data transfer?


Development plan philosophy

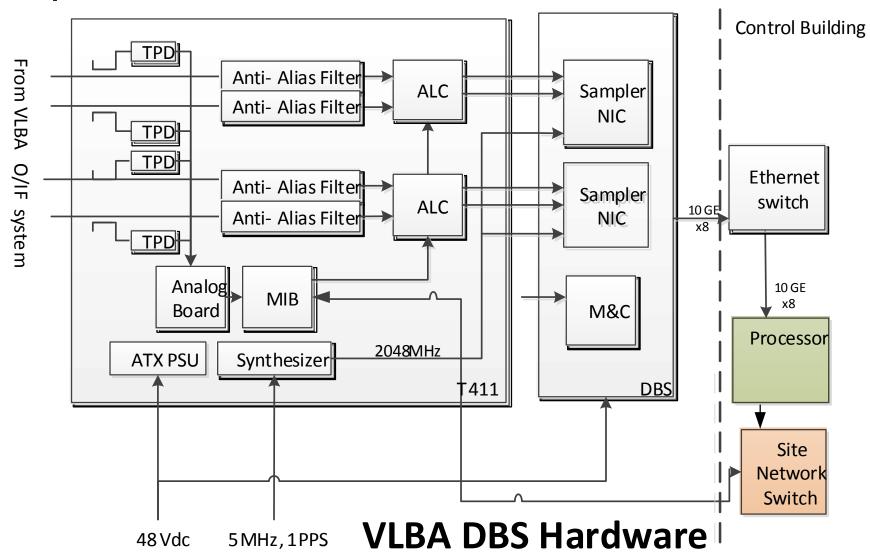
- Upgrade elements should have well defined interfaces
 - Use of industry standard connectors and protocols
 - Compatibility with existing interfaces where possible
 - Monitor and control via EVLA "MIB" system
- Upgrades should be executable in any order
 - Some increased cost when performed in unnatural order
 - Some decreased cost possible when timed correctly
- External/university and partner involvement encouraged
- Each upgrade element to be divided into two projects:
 - Development/implementation: verify functionality at one antenna
 - Procurement/deployment: shovel ready, array-wide

Core data path Possible concept under study

Wideband IF system

- New synthesizers, downconverters and filters
 - NRAO-patented synthesizers will provide accurate step tuning with fine control over a full 2-12 GHz tuning range
- Produce four IF signals with 0.5, I or 2 GHz bandwidth
 - Two IFs per polarization
- Enable multiple polarization-pairs to attach to one receiver
 - To allow full 4 GHz bandwidth at frequencies above 4 GHz

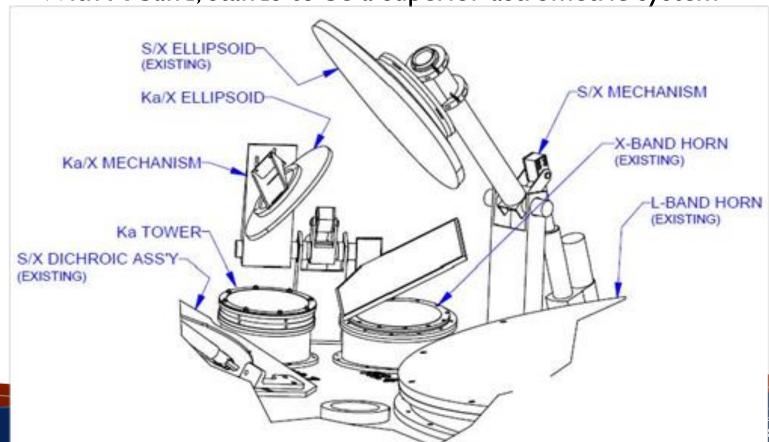
Samplers & channelizers


- Four 2 Gsps or 4 Gsps / 8-bit samplers
 - For operation at 2 or 4 GHz bandwidth per polarization
- FPGAs to flexibly channelize and requantize to 2, 4 or 8 bits
- Move sampler functionality to antenna vertex room
 - Reduce analog path
 - Transmit data over 10+ Gbps Ethernet on existing fibers
 - Strong RFI generator! Effective shielding and cooling needed
- Commercially-available hardware identified as possible platform
 - Provides natural upgrade path

Samplers

Mark6 recorders

- Replace Mark5C recorders w/ Mark6
- Increase recording rate from 2-16 Gbps (immediate BW doubling)
- Provides infrastructure useful for electronic transfer VLBI
- Implementation project underway already
- Array-wide procurement awaiting funds; complete in 2019?



Ka-band receiver w/ X-band dichroic

- Highest priority new receiver band: 26.5-40 GHz
 - Offers high angular resolution with low system temperature
 - Offers access to some spectral lines
 - With X-band, stands to be a superior astrometric system

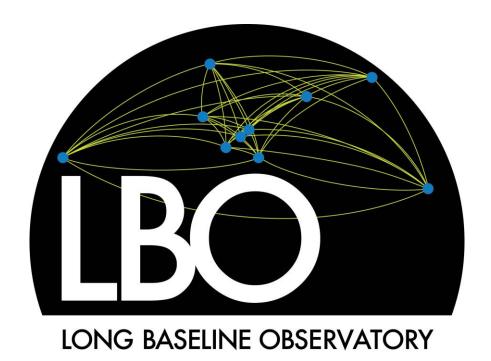
Some thoughts on collaboration

Based on past experience

- We (VLBA) would like to work with others to grow our infrastructure
- Collaboration is in radio astronomy's nature
 - VLBI not possible without it
- It is generally in our best interest, but...
- Collaboration is difficult!
 - "Not invented here" and institutional ego can drive poor decisions
 - Trade-offs between benefit and burden need to be understood before entering joint projects
 - Beware of hidden requirements!

Requirements mismatch

- Functional requirements tend to attract collaboration
- Other factors are sometimes overlooked:
 - Operational requirements: operational lifetime & support, reliability, level of automation, completeness of documentation
 - Physical requirements: enclosures, RFI emissions, cooling
 - Environmental requirements: temperature, vibration, tilt
 - Data security and integrity
 - Interface compatibility: connector types, M&C protocol, ...
 - Development/deployment timescale
 - Certainty of funding and requirements of funding agencies



Conclusion

- The past decade serves as indicator of what is possible over the next decade
- Increased bandwidth and increased flexibility in tuning are driving changes to the core data path
- New scientific use cases drive request for Ka-band receiver
- LBO will look to other development projects for synergy
 - E.g., ngVLA, Radionet BRAND project
 - Maybe eMERLIN and VLBA have similar requirements?
- Effective collaboration with other radio astronomy facilities is strongly desired

www.lbo.us

The Long Baseline Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

The Very Long Baseline Array Overview

- Completed in 1993
- Ten 25m antennas on US soil from Hawaii to St. Croix, USVI
 - Baseline lengths from 236km to 8611km
- 10 receiver bands spanning 300 MHz to 96 GHz
 - Native dual circular polarization
- Data recorded on magnetic media and shipped to correlator
- VLBA correlator in Socorro, NM
 - Support for 20+ stations
 - Processes VLBA, HSA, and some global VLBI experiments

Recent upgrades

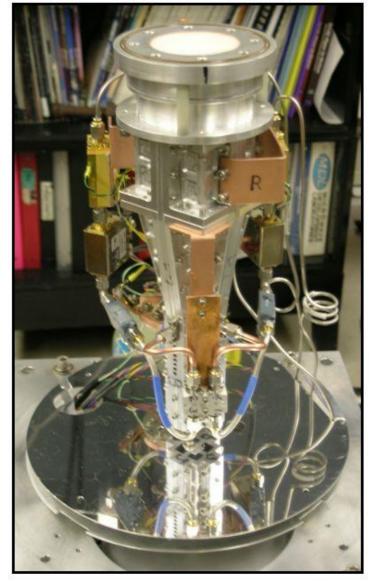
Correlator

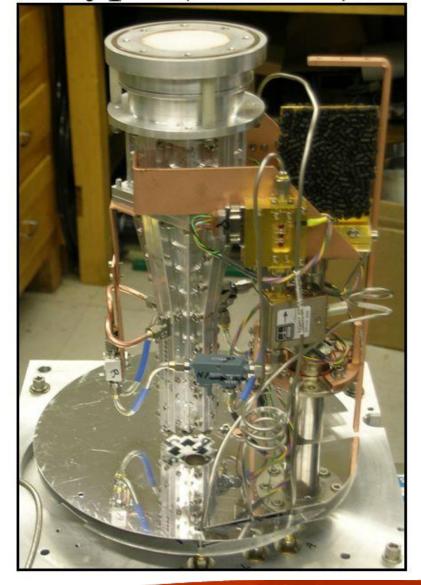
- VLBA original hardware correlator replaced with DiFX software correlator (2009)
 - Increased flexibility in spectral and temporal resolution
 - Advanced pulsar processing capabilities
 - Throughput scales with computer cluster
- VLBA software correlator updated to DiFX2 advanced software correlator (2011)
 - Massive-multi-phase-center capability
 - Up to 800 arcsec-scale phase centers over 30 arcmin FoV
 - Factor of 10 cost in computing
 - Bandmatching and zooming
- Improvements continue, with new software releases every ~2 years
- See Deller et al., 2007 and Deller et al., 2011

Interfaces are key!

- Use well tested and/or industry standard interfaces when possible
 - Invent new interfaces at your own risk!
- Sometimes better not to directly collaborate
 - However: competing developments can work toward common interfaces for future inter-compatibility
- Examples of enduring interfaces
 - Ethernet, VSI-S, VDIF, [vex]
- Big challenge: common "module/bin" enclosure architecture
 - VLA, VLBA, EVLA, ALMA & ngVLA all differ!
 - Rack-mount box is "lowest common denominator"
 - Poor use of space, RFI?, awkward servicability

Recent upgrades


Antennas


- 256 MHz bandwidth per polarization via digital back end
 - Upgraded from 64 MHz
 - Completed in 2011
- 2048 Mbps record rate via Mark5C disk recorders
 - Upgraded from 512 Mbps Mark5A
 - Large disk supply funded by NSF MRI; completed in 2011
- "Coolest C-band receivers in the known universe"
 - 4-8 GHz tuning range, upgraded from 4.5-5.1 GHz
 - Improved from EVLA receiver design
 - Dual-IF-pair capability
 - Funding provided by MPIfR; completed in 2012

VLBA C-Band Prototype (VC#11)

