LEMMINGs: eMERLIN observations of nearby galaxies Ranieri Baldi & David Williams

Legacy e-MERLIN Multi-band Imaging of Nearby Galaxies

Rob Beswick (JBCA/e-MERLIN) Ian M^cHardy (Southampton) Plus the LeMMINGs e-MERLIN Legacy team including Ranieri Baldi (Southampton) David Williams (Southampton)

Main goals

1. AGN (nucleus)

- AGN/star formation discrimination
- accretion, radio/X-ray connection
- jets
- 2. Star formation (host galaxy)
 - individual populations, eg SN, PNe, HII regions
 - unresolved large scale emission
- 3. Neutral gas (host galaxy)
 - the fuel for star formation and AGN

- 'Shallow' = Palomar bright galaxy sample
 - Best selected sample of nearby galaxies (Ho et al 1995)
 - Optically selected, $B_T < 12.5$ mag, no radio bias
 - All galaxy types: Active (Seyfert, Liner), Non-active (HII region, Absorption line galaxies)
 - All 280 galaxies above Dec +20 [median distance 20Mpc]
 - Strong multi-wavelength coverage
 - Complete HST, Spitzer and (mostly) Herschel imaging
 - Almost complete Chandra imaging (Large Program approved)
 - Complete JVLA imaging
- 'Deep' survey is a sub-sample of shallow picking (six) objects with best multi-λ coverage.

LeMMINGs Sample

- Total project allocation is 810hrs
 - Palomar shallow tier → ~280 galaxies (on-source time ~48min/band/source); 750 hours total; no Lovell
 - Deep tier → 6 Targets observed (sub-set of shallow tier)
 ~5hrs/band/source; 60 hours total; Lovell

	Number of targets	Sensitivity µJy/bm	Luminosity (at median D)	Approx. On- source time
Shallow (L-band) res ~120mas	280	38	1.8 * 10 ¹⁸ W/Hz	48min
Shallow (C-band) Res ~ 35mas	280	15	7.2 * 10 ¹⁷ W/Hz	48min
Deep (L-band) with LT	6	8	7.5 * 10 ¹⁶ W/Hz	4.8hr
Deep (C-band) with LT	6	3	2.8 * 10 ¹⁶ W/Hz	4.8hr

Observations so far: L-band

- Palomar Sample:
 - 11 out of 28 blocks observed
 - 11 blocks calibrated, 103 sources mapped
 - RFI big problem. SERPent (D.Fenech) important
 - Sensitivity: rms ~0.1 mJy/beam
 - Flux densities : 0.1-500 mJy/beam
 - Resolution: 150-200 mas
- Deep Sample:
 - All 6 observed and published or in preparation (M82, IC10, NGC4151, M51b, NGC6217, NGC5322)

Shallow sample

Inactive

- Palomar Sample (103 targets, Baldi et al. in prep.)
 - 46% of the sample detected
 - 35% of the sample: BH pinpointed
 - Detection fraction:
 - LINER: 21 + (1) / 33 → 67%
 Seyfert: 3 + (1) / 4 → 100% Active

 - 3. HII regions: $8 + (8)/36 \rightarrow 44\%$
 - 4. Absoprtion line galaxies: $4 + (1) / 14 \rightarrow$ 36%
 - Extended radio emission appears with UV-tapering
 - Radio morphologies: core/core-jet, one-sided jet, triple sources, double-lobed, complex

Radio morphologies

Radio morphologies

Full resolution

Low resolution

Unidentified sources

Deeper than any other radio survey of the Palomar sample (Nagar et al. 2002, Filho et al 2006)

Within a factor 100 of Sgr A* (in L band), but aim at reaching radio luminosity function within a factor of 10 in C band

Southampton

Radio – BH mass

LINERs follow the liner correlation line-core of FRI radio galaxies (LINER): ADAF disc Seyferts are above the correlation: additional line contribution from a thin disc? HII regions are below the correlation: lack of a ionisation source?

Right: VLBA+VLA λ21cm continuum image Mundell+03

Below: MERLIN neutral hydrogen image Mundell+95

- Look for changes in morphology and flux density between 1993 and 2015
- Put an upper limit on the bulk jet speed over this 22 year period
- Compare the radio structure to the emission line region properties from HST images

New eMERLIN image

Williams+17

- The morphology of the central 400 pc jet structure is broadly unchanged in 22 years
- The core component (C4) where the AGN resides has increased by 50% in flux density
- The nearest jet component to the core, C3, has decreased by 30%
- Most of the other components have decreased in flux density
- Upper limit to bulk jet velocity set to 0.04c

The Emission Line Region

Continuum subtracted HST emission line maps of NGC 4151 Left: Hα Emission Line Image, Right: [OIII] Emission Line Image Williams+17

[OIII]/Hα image

Conclusions (NGC 4151)

- The AGN in NGC 4151 has brightened significantly in a 20 year timescale
- Adiabatic expansion can explain the reduction in flux density of the other components
- Photoionisation from the AGN is responsible for most of the emission lines seen, but...→
- →…the jet could contribute the optical line emission near to the jet components

CONCLUSIONS

- Nearby galaxy surveys with eMERLIN have great potential for study of LLAGN, jets and star formation on crucial small scales.
 - 1. LeMMINGs: Palomar sample (103 targets so far, Baldi et al, in prep.): deepest Palomar radio survey, 10 times higher than SgrA*
- Current L-band LeMMINGs observations are going well but suffer from RFI. C-band will be less affected.
- eMERLIN resolution is well matched to nearby galaxy studies but need improved low frequency sensitivity and uv coverage – Lovell telescope
- If funding were available, more sensitivity on scales in between current eMERLIN and VLA (ie baselines of 80-100km) would help: the addition of Goonhilly telescope