.8 UNIVERSITY OF
» CAMBRIDGE

e-MERLIN Software in
the SKA Era

Paul Alexander

5 UNIVERSITY OF
¥ CAMBRIDGE

Aim and approach

* Convergence between SKA and e-MERLIN software
environment
* Possible since SKA software will run in regional centres
as well as at the SKA sites
* Leverage UK-SKA investment for e-MERLIN
UK s leading the SKA Science Data Processor (SDP)
* Early access to developing SKA software
* Enable UK community to have early access to the SKA
software environment
* Ability to experiment and develop new algorithms and
approaches tested on e-MERLIN used on SKA and vice
Versa

Paul Alexander: Software Developments

1 UNIVERSITY OF
4P CAMBRIDGE

Aim and approach

* Convergence between SKA and e-MERLIN software
environment
* Possible since SKA software will run in regional centres
as well as at the SKA sites
* Leverage UK-SKA investment for e-MERLIN
UK s leading the SKA Science Data Processor (SDP)
* Early access to developing SKA software

Key aspect which makes this sensible for e-MERLIN is the co-development
between SKAO and NRAO / CASA team of next generation of the measurement
set MSV3

SKA will use MSV3 as its data format

Interface layer will mean MSV2 can be read by MSV3 compatible software and
vice-versa

Paul Alexander: Software Developments

8 UNIVERSITY OF
How will this work? o CAMBRIDGE
Separate project — no coupling, low risk

2019

First viable SDP
product

* SKA Open Source First end-to-end

functional o
* SKA development will milestone % =
use a scaled-AGILE — =

X
Approach, SAFe " = %

(%) o =2
S ° @ =
* Maintain a working = = = s
system throughout 2 3 Probably array 2 =
3 s releases @ 3
. ot 3 1 o
* Integration at overall o) o 2 @
solution level (SKA) is - § %
every 3 months rgb ‘g
:

* Important milestones
include the Array
Releases when new
antennas are released
for science verification

2024

Paul Alexander: Software Developments

5 UNIVERSITY OF
¥ CAMBRIDGE

What do we get and what does it look
like?

 SKA SDP environment provides:

* Scalable performance

* Ease of writing work flows (pipelines) from simple
functional components

* Execution framework is the scripting environment
for the work flows which also delivers the
scalable performance

* Functional components are basic functions you
want to apply to the data, some high level some
lower—Ilevel

* \Very likely it will be a Python interface (see
prototype later)

Paul Alexander: Software Developments

B UNIVERSITY OF
&¥ CAMBRIDGE

Data Driven Architecture

fnemmm
Time &
baseline
| R

LR &
h: l" i | . a I

Freguency

VIEIbI'IW dsig ITTm

LUK

|ll|ll =

I Processing nodes

Paul Alexander: Software Developments

Data Driven Architecture

Time &
baseline

||||||| T
IEInni
[l

I

Fw\’
Visibility dat

o Smaller FFT size at cost of data duplication

Paul Alexander: Software Developments

UNIVERSITY OF

Data Driven Architecture

Time &
baseline

l rJHIJI}[.I'ELI[I

>

|

Frequency

Visibility data

o Further data parallelism in spatial indexing (UVW-space)
o Use to balance memory bandwidth per node
o Some overlap regions on target grids needed

Paul Alexander: Software Developments

B UNIVERSITY OF

Data Driven Architecture

Time &
baseline

LOLL LD

Visibility dat

Paul Alexander: Software Developments

B UNIVERSITY OF
4P CAMBRIDGE

How do we get performance and manage data
volume?

Approach: Build on BigData Concepts
"data driven” = graph-based processing approach

receiving a lot of attention
Inspired by Hadoop but for our complex data flow

Graph-based approach
Vertex Actor data source
Edge Channel

o0 —0—;

O— O—

Paul Alexander: Software Developments

Hadoop

5B UNIVERSITY OF
» CAMBRIDGE

Top-level Component Architecture

E «ext. system» {l

wext. systems .
: Telescope Manager : Central Signal
Aty
h M ————. i
TM Conlwol =]
“mf" atangom miﬂ“ “‘EID"“T’EID" wtango ,J.‘ wspeads ftpo TG
| S | S | . |- |-
: Local E . Model E E : Receive & @
<] Monitoring and Databases : Data Queues Real-Time
Control Processing
1 1 1 1 1 1 1 1
ITI queues
«filesystems:
1
£] N £]
: Quality . . : Batch
Assessment : Dellvery Buffer Processing
1 1
. - N
«sub-systems E
n (] : Preservation
«ext. systems» E f'g’::l‘asr?f;em” E
: Observatory Regional Centres Key (UML Component)
Component
I Interface Port
—— Communication
— Coordination

Filesystem

Pa ul Alexand _ Queueing -

UNIVERSITY OF
CAMBRIDGE

Execution Framework

SDP Master
Controller

Local State/Model

Scheduler

Services

Workflow

“Program”
N r
Executing Capability
L 4
y ~ 'y
4 | | [Datalsland [|
e HTCInstance1 4 | [e—
L y |\ Buffer |/
Science Events ——
Notification Service | v
| ' N r'|‘l“ Data Island II" \
N < | ———]
‘ HTC Instance 2 I | Buffer |/
| S A A4 A4 T
Quality Assesment _ _| 1.{ Workflow Executor
Aggregation Service [v —_——
| 4 ~N r"|‘l‘ Data Island l-" \
<
ke —L HTC Instance ... |« | Buffer)
|
| ¥ —
| 4 A | Datalsland [|
—
— — — 4 HTClInstance N |« ™ Buffer ||
DATE -{\ /,‘ :.
7/10/2016 ? S
TITLE Symbols Key
DRAFT: Component & Connector view of generalised architecture of an Executing Capability > Synchronous Call-Return
DESCRIPTION —_ Asynchronous Send
Illustration of generalised architecture in C&C view describing structure of an Executing Capability. The executing capability is divided into a number of jobs, Storage Access (e.g. filesystem or
which we name HTC Instances to indicate that themselves these are large, highly parallel and almost certainly distributed components. These HTC instances object store)
are initiated and sequenced by the workflow manager component. Each Job communicates only with its own Data Island Buffer and with the local services
(local telescope state, lacal sky model). The jobs are not able to communicate directly between each other or force sychronosiation. @ Run time component (in SEl usage)
Itis intended that Jobs, at least in processing, correspond to processing of frequency sub-bands
The workflow manager sequences, initiates and controls jobs. It is also abI:e to access each of the Data Island Stores, specifically to move data between [—___] Document sent along a connection
them. o
I H Bulk Data Storage System
—> Control connection

Paul Alexander: Software Developments

Execution Framework

HTC Instance Component

UNIVERSITY OF
CAMBRIDGE

DATE
07/10/2016

\

Data Island
e o e

TITLE

DRAFT: HTC Instance C&C view — Summary of Deliuge implementation — for comparison against proposed

generalised architeure

DESCRIPTION

Paul Alexander: Software Developments

Symbols Key

e Asynchronous Call/Return

“—> Synchronous Call-Return

4—» Storage Access (e.g. filesystem or

[
Lo

—

object store)
Run time component (in SEl usage)

Bulk Data Storage System

Asynchronous Contorl (TBD)

5 UNIVERSITY OF
¥ CAMBRIDGE

In addition to performance

* Software to manage and provide complex sky
models to the analysis

e Software to manage and provide telescope models

* A data archive

e Ability to run in a standard cloud environment or on
an HPC

* Functional components from which all start-of-the-
art pipelines can be constructed
* Easy to experiment with new ideas at scale

Paul Alexander: Software Developments

B UNIVERSITY OF
4P CAMBRIDGE

What might it look and feel like

* Prototyping using SPARK and DASK execution
frameworks

* Toy example using lazy evaluation to build an
execution graph wrapping existing functions and

evaluate
from dask import delayed from dask import delayed
L=1] L=1]
for channel in filenames: for channel in filenames:
data loadMSV3(channel) data = delayed(loadMSV3)(channel)
L.append(image(data)) L.append(delayed(image)(data))
result = channelsloin(L) result = delayed(channelsJoin)(L)

result.compute()

Parallel

Serial

Paul Alexander: Software Developments

UNIVERSITY OF
CAMBRIDGE

And finally a real example — parallel predict

dask predict
1 def predict dask(vt, model, predict single=predict 2d, iterator=vis timeslice iter, **kwargs):
2
3 def accumulate results(results):
i i=0
5 for rows in iterator(vt, *¥*kwargs):
6 visslice = create visibility from rows(vt, rows)
I vit.data['vis'] [rows] += results[i].data['wvis']
2 it+=1
10 return vt
12 results = list ()
13
14 for rows in iterator(vt, **kwargs):
15 visslice = copy wisibility(create visibility from rows(vt, rows))
16 result = delayed(predict single, pure=True} (visslice, model, **kwargs)
17 results.append(result)
18

19 return delayed(accumulate results, pure=True) (results)

Courtesy Tim Cornwell

Paul Alexander: Software Developments

55 UNIVERSITY OF
CAMBRIDGE

Benefits

* High performance workflows on cloud or HPC systems —
increased productivity

* Learn about SKA software environment early — get ready
for the SKA era

e Access state of the art algorithms as they become
available

* Fully exploit STFC hardware — Dirac or Cloud Infrastructure

* Develop new algorithms

 e-MERLIN ready for the SKA era

Paul Alexander: Software Developments

