Disentangling AGN from Star-formation at Radio Frequencies

The University of Manchester

Minnie Yuan Mao Marie Skłodowska-Curie Fellow

JBCA

Background

- Extragalactic radio emission from galaxies can be attributed to either starformation or the presence of AGN
- At ~GHz radio frequencies, both AGN and starformation emit non-thermal synchrotron emission
- How can we disentangle star-formation from AGN?

SF vs AGN

- Optical spectra
- Far infrared radio correlation
- Mid infrared colours
- X-ray hardness ratio
- Radio morphology
- .
- Importance of multiwavelength ancillary data!

SF vs AGN

- But galaxies aren't binary! (star-forming **or** AGN)
- Many sources exhibit both star-forming and AGN characteristics
- E.g.
 - Seyferts
 - LIRGs/ULIRGs
 - Spiral DRAGNs
- eMERGE has detected sources that have an AGN embedded in areas of star-formation
- This is very exciting for Spiral DRAGNs!

Spiral DRAGNs

- Frazer Owen
- Ryan Duffin
- Bjorn Emonts
- Bill Keel
- Mark Lacy
- Paddy Leahy
- Emmanuel Momjian
- Glenn Morrison
- David Mulcahy

- Tony Mroczkowski
- Susan Neff
- Ray Norris
- Anna Scaife
- Henrique Schmitt
- Jean Tate
- Vicki Toy
- Sylvain Veilleux

DRAGN: Double-lobed Radio sources Associated with Galactic Nuclei (Leahy 1993)

What's in a Name?

- Spiral
 - Spiral refers to spiral galaxies, so named due to their spiral structure

DRAGNs

Double Radio source
Associated with Galactic
Nuclei

Motivation .

Powerful double-lobed radio sources are almost always associated with elliptical galaxies (e.g. Matthews 1964)

Spiral DRAGNs

Keel et al. 2006

Mao et al. 2015

Hota et al. 2011

Bagchi et al. 2014

Star-formation and AGN

Heart of the DRAGN

- VLBI can be used for very high angular resolution observations
 - Long Baseline Array (LBA)
 - Very Long Baseline Array (VLBA)
 - European VLBI Network (EVN)
- Rule out chance-alignment...
- Spiral galaxies tend to have more gas than Elliptical galaxies → Jet interaction with ISM?

J1649+2635: eEVN and EVN

J1649+2635

J1649+2635: eEVN (L-band)

IRAS F00183-7111: a ULIRG

- Ultra Luminous InfraRed Galaxy $\rightarrow L_{IR} > 10^{12}L_{\odot}$
- IRAS F00183-7111 (F00183) is one of the most luminous sources discovered by IRAS!
- z = 0.3276 (Roy & Norris 1997)
- $S_{70\mu m} = 1.5 Jy$
- $L_{8-1000\mu m} = 9 \times 10^{12} L_{\odot}$ (Spoon et al. 2009)
- L_{4.8GHz} = 3 x 10²⁵ W/Hz (Roy & Norris 1997)
- Radio-loud ULIRG!

nJy/beam

-3000

-1000

0

Velocity (km/s)

1000

2000

3000

-2000

Peak: 6.3 mJy / beam Velocity shift: 305 km/s FWHM: 297 km/s SFR ~ 220M/year

Mao et al. (2014)

Can we detect star-formation using radio?

Radio Continuum from Star-Formation

- If we assume ~30% of the IR luminosity is due to starformation, then using the FIR/ radio correlation we can guesstimate the amount of star-formation we would expect to see in the radio
- $S_{70\mu m} = 1.5 \text{ Jy} \rightarrow \sim 0.5 \text{Jy}$ from star-formation
- Using q70 = 2.15 (Appleton et al. 2004), we would then expect to detect 3.5mJy at 1.4GHz
- α = -0.97 between 1.4 and 8.6GHz (Drake et al. 2004)
- Expect to detect ~200uJy at 9GHz due to star-formation

Dynamic Range Limited

The addition of eMERLIN and SKA

- eMERLIN will enable us to detect and resolve nuclear star-formation in spiral DRAGNs (and ULIRGs)
- VLBI observations with VLBA and EVN can pull out the most compact components of the source, but cannot detect slightly extended jet structure or compact SF regions
- SKA-Mid1 will have comparable max. baselines to e-MERLIN with much more complete uv-coverage
- This will enable AGN and SF components to be detected in spiral DRAGNs → powerful radio sources embedded in star-forming galaxies