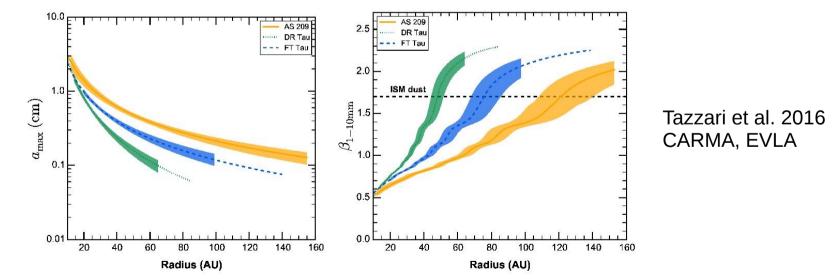
Jane Greaves, Cardiff

proto-planetary discs - viewing the PEBBLeS*

*Planet Earth Building Blocks: the Legacy eMERLIN Survey

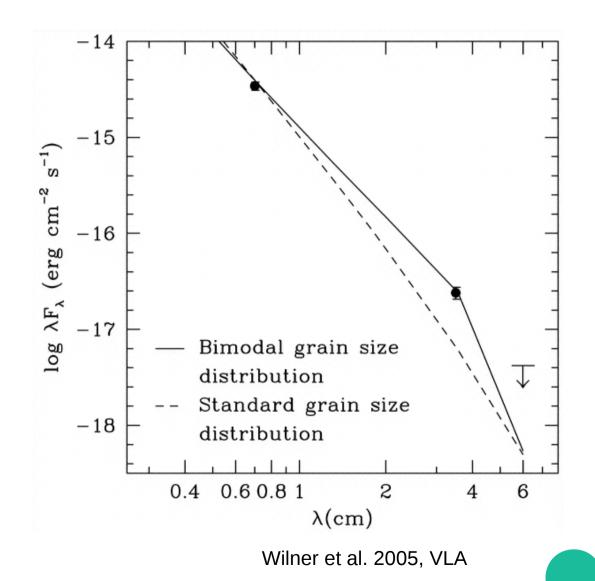
some context


- plausible that all stars have a planet(ary system)
 - natural consequence of star formation process
- next advances: habitable planets
 - Earth-like mass, orbit, composition?
- hence research priorities:
 - birth sites and migration of exo-Earths
 - accretion stages (oceans, atmosphere....)
 - influences of other planets in the system

blahblahALMAblahblah...

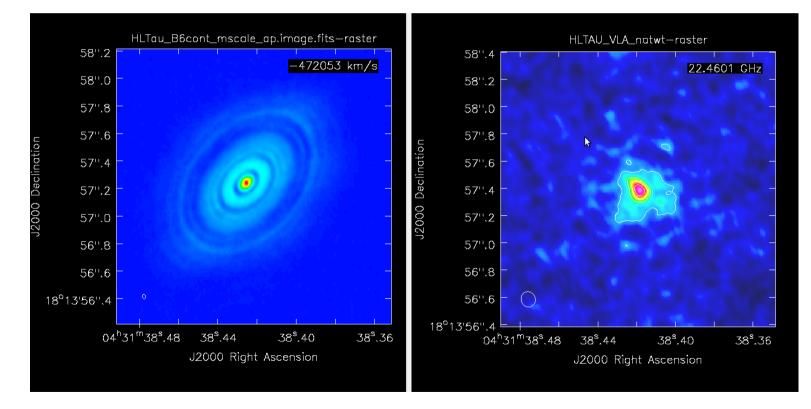
 millimetre observations of dust discs are not always the most insightful

- inner disc likely optically thick at $\sim 1 \text{ mm}$
- grains producing mm-emission rather ubiquitous



where do grains go on to form planetesimals?

radio emission from grains


- high angular resolution view isolating dust particles large enough to be cm-emitters
 - shows where the 'millimetre barrier' is overcome

• not easy!

radio emission from protoplanets

possibility of seeing dust being accreted into planetary cores

HL Tau: ALMA 233 GHz; VLA 22.5 GHz (Greaves, Richards, Rice & Muxlow 2008)

PEBBLeS

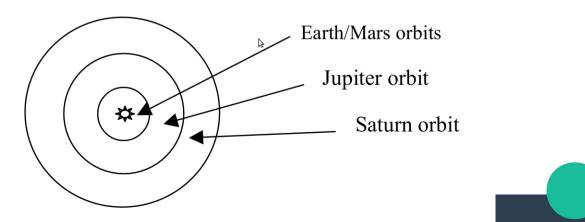
prototyping observations approved in 2009

- 2 fields x 36 hours each, in C-band
- full survey aim: ~20 stars in ~12 fields
 - to few-Earth-mass sensitivity
 - involving ~30 scientists from 7+ countries
 - obs/theory/exp't view of planet formation

Table 1: Distribution of flux density among planet-forming zones of disks in the survey, assuming they have smooth r^{-1} surface density profiles and are seen face-on; the 40-mas-wide annuli contain 6, 12... beams. For clusters at 140 and 220 pc, the range of disk masses is 2.5-8 and 6-19 MMSN, respectively (Figure 3). An $r^{-1.5}$ disk would be more centrally peaked while inclined disks have higher flux per beam.

distance	annulus	effective	T _{dust}	M _{ring}	F _{beam} (5cm)	rms (5cm)	S/N _{beam}
	(orbital zone)	radius (AU)	(K)	(M _{Earth})	(µJy/beam)	(µJy/beam)	
140 pc	Earth/Mars	1.5	280	25-80	15-50	1.3	12-35
(Taurus)	Jupiter	5.5	140	50-150	2.5-8	1.3	2-6
	Saturn	11	100	50-150	1-3	1.3	(0.7-2.5)
220 pc	Earth/Mars	2	220	100-300	20-60	1.3	15-45
(NGC 1333)	Jupiter/Saturn	9	110	200-600	4-10 ▷	1.3	3-8

PEBBLeS


prototyping observations approved in 2009

• 2 fields x 36 hours each, in C-band

full survey aim: ~20 stars in ~12 fields

- to few-Earth-mass sensitivity
- involving ~30 scientists from 7+ countries
 - obs/theory/exp't view of planet formation

Figure 7. Sketch of face-on disk seen at 140 pc, with annuli of width equal to the eMERLIN 5 cm resolution. For the furthest disks at ~220 pc (i.e. in NGC 1333), Saturn would appear in the same annulus as Jupiter.

PEBBLeS

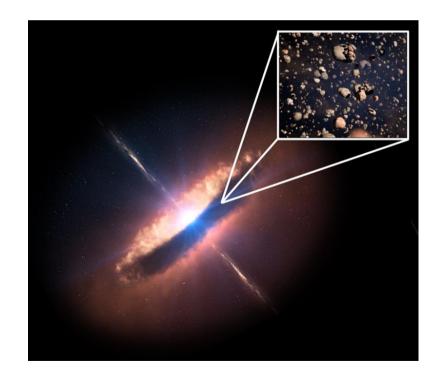
• pushing eMERLIN limits:

- new C-band receivers, full bandwidth, Lovell
 - 3 tracks per field for detection at few-µJy level

moving from commissioning to prototyping stage

 but! other advances mean we can zoom in on the Habitable Zone (2 AU resolution, at K-band)

lots of parallel development


 better theory in grain physics ... completed 1cm survey (Disks@EVLA)... pdra starting at Cardiff

commissioning results

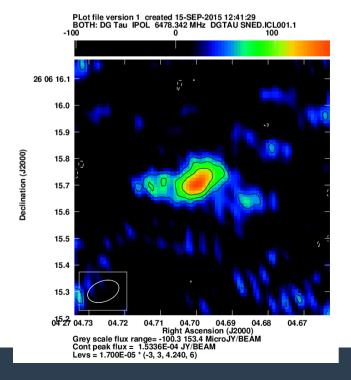
no fields done at full spec yet, but DG Tau has turned out substantially brighter than expected

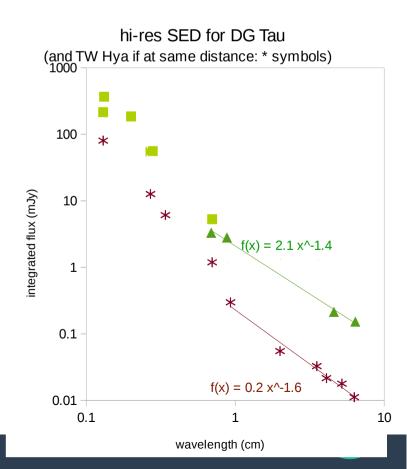
PLot file version 1 created 15-SEP-2015 12:41:29 BOTH: DG Tau IPOL 6478.342 MHz DGTAU SNED.ICL001.1 -100 100 26 06 16.1 16.0 15.9 **Declination (J2000)** 15.8 15.7 15.6 15.5 15.4 15.3 04527 04.73 04.72 04.71 04.70 04.69 04.68 04.67 Right Ascension (J2000) Grey scale flux range= -100.3 153.4 MicroJY/BEAM Cont peak flux = 1.5336E-04 JY/BEAM

Levs = 1.700E-05 * (-3, 3, 4.240, 6)

https://www.ras.org.uk/news-and-press/2656astronomers-see-pebbles-poised-to-make-planets

data reduction: Anita Richards + Emily Drabek-Maunder


:-)


commissioning results

DG Tau's disc appears to be a 'super TW Hya'

- still isolating possible jet, disc-wind signals
 - benefiting from Jets Legacy

(extra C-band from Ainsworth et al. 2013)

updating the science goals

from a census of discs:

- when do planets form?
 - e.g. in relation to the volatile-rich early disc
- forming in-situ, versus migration
 - where does a planet's raw material come from?
 - do planets interact dynamically?
- where does planet formation succeed, and why?
 - i.e. the physics of growing solid bodies (sticking, fragmentation, drift...)

eMERLIN for pebble science

 a head start on SKA1-MID science - this is the top priority objective in the Cradle of Life goal

(... and it is hit quite hard by re-baselining options)

- eMERLIN, unlike other facilities, offers:
 - long baselines (even better with Goonhilly)
 - good frequencies (higher is better: $F_{dust} \sim \nu^{2+}$)
 - sensitivity really critical!
 - PEBBLeS has a flux limit of a few times the 'minimum mass solar nebula' – but Earths could be built from lower-mass discs