

e-MERLIN – The Next Leap Forward Simon Garrington

1950's-70's

single baselines radio links ->100km phase coherent

1980's

MERLIN – radio-linked 110km, 10 MHz

1990's-2000's

MERLIN-2: 32-m at Cambridge

217km, 2x15 MHz, new rx, correlator...

2010-2020

e-MERLIN

fibre network; 2x2 GHz

2020+ JBNA

full freq coverage 2x8 GHz Lovell Tel PAF

Fig. 2. An outline map of northern England, showing the positions of radio telescopes

The University of Manchester

Jodrell Bank

- SKA will be different
- Transition period: MeerKAT, ASKAP, LOFAR, MWA
- E-MERLIN provides resolution for key science galaxy assembly/evolution; star/planet formation

MeerKAT: 5 arcsec VLA: 1.5 arcsec **e-MERLIN 0.15 arcsec** VLBI 0.015 arcsec

1 kpc @ z=1 (1.5 GHz) 5AU @ Taurus (8 GHz)

MANCHESTER

200km

Next Gen VLA

- 250x 18m antennas
- 1-100 GHz
- Planet formation; galaxy assembly
- PI-driven, pointed

... \$x bn, 2030?

Slide adapted from M McKinnon

Jodrell Bank Array

JBA

- Full integration of Lovell Telescope
 - Programmatic, financial, technical
 - PAF to match e-MERLIN FOV
- Full Frequency coverage ~1-30 GHz
- Full bandwidth 8 GHz/pol
- SKA and COTS technologies
 - Data acquisition & sampling, network, correlator
- SKA-like operations
 - Phasing-up; sub-arrays
 - SDP, Pipelines, transients,...

Competitive & Compatible

World-class instrument on UK soil; Test-bed & training ground for UK SKA community

Same resolution & frequency range as SKA1-mid

Lovell Telescope Refurbishment + Upgrades

- Lovell Telescope Structural refurbishment
 - (UoM: £6M)
 - (old) surface, foundations, structure
- Lovell Telescope PAF (UoM £0.6M)
 - 96 elements, 36 beams
 - Expand Lovell Telescope FOV X10

Upgrade paths

- Frequencies
- Data acquisition, transport, correlator

SKA-1 Bands 1: 0.35-1GHz 2: 1 - 1.83: 1.8 - 3.0 4: 3.0 - 5 5: 5 - 13.8(25?)

SKA1-mid Band 5+ SKA1-mid Band 4 SKA1-mid Band 3 SKA1-mid Band 2 SKA1-mid Band 1 SKA1-low Galactic NH3 VLBI 1cm-band Galactic H2O ExG CO VLBI 4cm-band Cont. Proto-planets (22) Cont. Thermal (37) Pulsar Search GC Galactic CH3OH ExG CS ExG HCO+ SN/GRBs Galactic H2CO ExG H2O VLBI 5cm-band ExG HCN VLBI 13cm-band Galactic OH VLBI 18cm-band Galactic HI (15) Pulsar Timing high (5) Pulsar Search high DM (4) Transients FRBs (18) Solar Synchrotron Ems Galactic RRL Galactic Continuum SET B-field Deep/Targeted ExG OH Cosm. Discrete HI Cosm. Continuum (33) B-field Cont. RM-grid (27) HI Wide surveys (13, 14) Galactic CH ErG Cont. Non-thermal (37) Pulsar Search mid DM (4) HI Deep surveys (13) Statistical HI (32) Pulsar Timing low (5) Pulsar Search low DM (4) Lunar Atmospheric Epoch of Reion (1) Cosmic Dawn (2) Exo-planets Solar Plasma Ems

Frequency Ranges of SKA1 Observational Categories

SKA Baseline Design v2 /Oct 2015

10

10000

MANCHESTER

Band Plan

Octave

L: 1.3-1.75 GHz S: 2.2- 4 C: 4 - 8 X: 8 - 16 ← 5b? K: 16 - 26 ← 5c?

SKA Band 5/5+ 5 - 13/26 GHz

```
WBSPF
```

```
(L:1.3-1.75)
BRAND (RadioNet)
1.5 – 15 GHz
K: 16-26
```

Significant penalty in efficiency/Tsys Fewer Rx to operate Simultaneous coverage

The University of Manchester Jodrell Bank

MANCHESTER

Measurement Parameters

		Stop Frequency	2.450 000 000 GHz				
Trace Mode	Normal	Frequency Span	2.000 000 000 GHz				
Preamp	ON	Reference Level	-40.000 dBm				
Min Sweep Time	28	Scale	10.0 dB/div				
Reference Level Offset	0 dB	Serial Number	1324070				
Input Attenuation	10.0 dB	Base Ver.	V4.88				
RBW	10.0 kHz	App Ver.	V6.30				
VBW	3.0 kHz	Model	MS2720T				
Detection	Peak	Options	720				
Center Frequency	1.450 000 000 GHz						
Start Frequency	450.000 000 MHz	1					

Band priorities & comments

- L:1.25-1.75 maintain & improve
- S: 2 4 GHz new Rx
 - Easy design, good performance, optics?
 - Can use full current 2 GHz bandwidth: sensitivity+res'n
 - Prime JVLA survey band: JBNA+JVLA
- C: 4 8 GHz maintain & improve
 - Already building new Rx: T_rx = 10K (LNA, new cold head)
 - Upgrade to 4 GHz bw
- X: 8 16: new Rx
 - Looking at designs
 - Aim for 8 GHz bw; can start with current 2 GHz
- K: 16 26: new Rx
 - Improved 20-24 GHz Rx being installed now (T_rx = 30K)
 - New HEMT design, 8 GHz bw

S-band RF environment

Some pressure for further public sector release in this area

Digital Rx & transmission

- MANCHESTEI
- Current 4 Gs/s devices (Teledyne) Difficult for JVLA & e-MERLIN...
- TI & e2v 4-5 Gs/s 12b devices look better
- 26 Gs/s 3 bit chip from Analog Devices
- 100G transmission driving high speed ADCs

MANCH

4 Gs/s sampler update

- Long story of using 4 Gs/s Teledyne devices at NRAO and JBO
- Design change; poor performance (median 10% down, but long tail); requires good performance across band
- JLVA: partial replacement with Hittite devices
- e-MERLIN implementation delayed & hit further problems: firmware & significant board rework
- Finally fully integrated & running end-end
 Now tuning
- On-sky tests & early obs Oct/Nov

Digital Options

- Next steps are 4 & 8 GHz/pol
 N x 2 GHz IF blocks single wideband RF processor (16+ Gs/s)
- Follow SKA?
- Follow DiVA?, watch ~ 20 Gs/s developments?
- Data Transmission
 - Fibre Network in place
 - Move to 100 Gb/s COTS
 8 GHz/pol @ 3b is 96 Gb/s

MANCHESTER

Correlator

- No additional capacity for > 2 GHz in existing WIDAR correlator (FPGA+ASICs)
- Many options: FPGA: PowerMX,Uniboard,Redback,AASL GPU: LOFAR, MIT, ATCA (6 x 8 GHz)
- Worth considering GPU route

 GPU board ~ 25 Gb/s
 boards/host with 100 Gb/s NIC
 Total ingest is ~ 0.8-1.2 Tb/s for 8 GHz/pol
 Topology depends on data organisation
 IF Chunks, or coarse channelisation at telescope
- Flexible, expandable, shareable with PSR, PAF processing

Upgrade sequence

- MANCHESTEI
- LT PAF
- S-band Rx
 - No digital dev required: immediate new sci with JVLA sensitivity & resolution for high-z starformation/AGN
- X-band Rx
 - First science with 2 GHz bw sensitivity & resolution for star/planet formation
- 100 Gb/s network upgrade
 - Interface to existing correlator
- Sampler & correlator upgrades
 - 4 GHz & 8 GHz
- K-band Rx
 - New Rx: 8 GHz b/w

Rough guide to performance...

Band	BW/GHz	FOV/ar cmin	Resolution/ mas	Rms/uJy
L	0.5	15	150	5-10
L-PAF (Lovell PAF)	0.4	30	150	7-15
S	2	10	75	~ 2
С	4	5	40	~ 1.5
Х	8	2.5	20	~ 2
К	8	1	10	~ 4

Additional Telescopes

- Network, correlator & digital upgrades make it much easier to add new antennas
 - Goonhilly
 - Defford replacement
 - Others in UK
- Including European antennas
 - For imaging & PSR (LEAP)
 - Onsala, Westerbork, Effelsberg,...
- And to fully integrate e-MERLIN + EVN
 - 10 10,000km baseline range
 - Better spatial DR than VLA A+B+C+D+

- Full integration with Lovell and single dish operations
 - Phasing-up, sub-arrays, transient & PSR processing, spectroscopy & continuum for any single dish,+...
- Higher reliability with more COTS & SKA equip
- Receiver operations and mounting
 - Telescope optics
 - 3 -> 5 rx/telescope
 - PAF + multiple single beam Rx on Lovell

Summary & Discussion

- MANCHEST
- Plausible & v cost-effective route to
 - New science bands, better performance, more flexibility, higher reliability
 - Provides a UK facility which is competitive & compatible in SKA era
 - Test-bed for science & instrumentation

Wrap-up points

- SKA + National facilities
 - Community support ('VLBA problem'- Phil)
 - Piloting, feasibility, SDP-tuning (1 chance Anna)
 - Too much to follow up (Evan)
 - Demand now (Jane)
 - Counting effort towards SKA (Danielle)
- Competitive & compatible...
- Strong case for e-MERLIN resolution: 'Goldilocks' across a wide range of science areas
- Sensitivity with 2-8 GHz b/w is competitive (Paul)
- Exciting possibilities for PSR and transients
 110m equivalent, FRB localisation,...

Upgrade path

- Non-disruptive
- Strong support for
 - LT integration
 - S-band extragalactic sensitivity & resolution
 - X-band stars/planets spectrum & resolution
 - Additional telescopes esp to S; EVN integration
 - Full bandwidth for max sensitivity
- Processing bottleneck
 - Need to speed things up!
 - Comprehensive approach to 'RFI' (incl raw voltage data)
 - Make early use of SDP pipelines
- Use of SKA technologies
 - 'Few extra in the production run' (Mike J)
 - Timescales are a key issue

MANCHESTER

Discussion points

- Technical alignment with SKA
- Technical contributions from UK groups ... return
- Strategic alliances
- Develop & prioritise science case
 - Upgrade sequence/priorities
- Frequencies < 1 GHz
- Scientific (and processing) alignment with SKA
- Big vs small projects

Next steps

This is just the start of the process...

Immediate/short-term (days/weeks):

please pass/send me your talks – we will places these on-line (next week)

- comments on plans – keep the coming

- I will send a brief questionnaire/email to attendees for comment and wide ranging input

Medium term (coming months):

- This is first of series of potential meetings. Future meetings:
 - Inc Focussed topic (science or technical) or more wide ranging
 - JBCA/e-MERLIN staff happy to come to institutes to summarise talks/plans
- Distil plans \rightarrow develop science case (w/t community input) & project plans
- Oversight/input (essential): as a national facility will engage key community members & relevant steering committees (e-MERLIN... etc)
- Stakeholder oversight: Set up a standing consultation/review committee (incorporating members of steering committees but broadening to encompass the whole 'JBNA' concepts..)(?)