LIRGS and (U-)LIRGs with eMERLIN and the EVN

Antxon Alberdi (IAA, CSIC; SKAO Visiting Scientist)

(+ M.A. Pérez-Torres, J. Conway + R. Beswick + M.Argo+ C. Romero-Cañizales, + LIRGI Team ...)

> "JBO in the SKA era" Manchester, 15 September 2016

(U)LIRGs: scaled up starbursts

Radio Observations of Starburst Galaxies

□ Compact (≤150 pc) high surface brightness ($T_b \ge 10^3$ K) central radio source \rightarrow generated by a point-like source (AGN) and/or by the combined effect of SNe and RSNe

Low surface brightness circumnuclear halo \rightarrow ongoing burst of star formation

LIRGI: eMERLIN Legacy Project

LIRGI: Science with eMERLIN

- Map diffuse radio emission
- AGN-Starburst Connection
- Trace the free-free absorption with high resolution
- Measure magnetic field strengths
- Obtain **dynamical masses**
- Spatial variations in chemistry and physical conditions

LIRGI: Science with the EVN

- Contribution of AGNs and starbursts
- Detection and measurement of Supernova Remnants (SNRs)
- Core Collapse Supernova (CCSN) rate

Arp299

HST-WFPC2 814nm image (Neff et al., 2004)

Early stage merger • $D \sim 45 \text{ Mpc} \rightarrow 1 \text{ mas} \sim 0.2$ pc • $L_{\text{IR}} \sim 6.7 \times 10^{11} \text{ L}_{\text{sun}}$ ~ $40\% \text{ in A} \rightarrow v_{\text{CCSN}} \approx 0.8 \text{ yr}^{-1}$ ~ $20\% \text{ in B1} \rightarrow v_{\text{CCSN}} \approx 0.4 \text{ yr}^{-1}$

Arp 299: eMERLIN Image

The Arp 299-A lab: Summary

IC883

Advanced stage merger (starburst-AGN composite)

D ~ 100 Mpc → 1 mas ~ 0.5
 pc

•
$$L_{\rm IR} \sim 4.7 \times 10^{11} L_{\rm sun} \rightarrow$$

$$v_{\text{CCSN}} \approx 2.4 \text{ yr}^{-1}$$

Two new SNe discovered: SN 2010cu (Ryder et al., 2010) & SN 2011hi (Kankaré et al. 2011)

$$v_{\rm CCSN} \approx 2_{-1.3}^{+2.6} {\rm yr-1}$$

HST-NICMOS 1.6 µm image (Haan et al., 2011)

IC 883: e-MERLIN + e-EVN observations

\sim 1 kpc structure at 144°, showing components of a warped rotating ring

Romero-Cañizales et al., 2012

IC883: nuclear region

8.4 GHz (θ =1x0.6 mas, PA=3 deg)

New ejected component at 8.4 GHz: not present in VLBA observations from 15.05.2011 at the same frequency (although at poorer resolution).

◆The jet-like component was probably ejected sometime between May 2011 and November 2012 \Rightarrow it has moved at 0.6 *c* < *v* < 1.1 *c*

• The jet dies out fast? No signs of it at $\theta > 2$...

NGC 6670

Two edge-on disk galaxies, in early stage of interaction.

• *D* ~ 120 Mpc → 1 mas ~ 0.55 pc

•
$$L_{\rm IR} \sim 4.7 \times 10^{11} L_{\rm sun} \rightarrow$$

 $v_{\text{CCSN}} \approx 2 \text{ yr}^{-1}$

Enhanced SF in the nuclear region of both galaxies → Nuclear Starbursts

(Wang et al., 2012)

NGC 6670

NGC 6670

100

NGC 6670

-eMERLIN L-band- Sensitivity: 14 microJy/b

- Angular Resolution: 150 mas

CGCG 448-020

- Merger of a two gas-rich spirals \rightarrow large number of super-star clusters, with at least tow age-population

D ~ 161 Mpc → 1 mas
 ~ 0.72 pc

$$L_{\rm IR} \sim 10^{11,94} \, {\rm L_{sun}}$$

- Most of the IR emission comes from a compact off-nuclear starburst \rightarrow SFR ~ 120 Msun/yr

CGCG 448-020

10 5 0 -5 ΔR.A. ["]

IRAS 20351+2521

- Nearly merged pair of galaxies

D ~ 150 Mpc → 1 mas
 ~ 0.627 pc

$$L_{\rm IR} \sim 10^{11,56} \, {\rm L_{sun}}$$

- Numerous blue star knots

(GOALS Sample)

IRAS 20351+2521

(GOALS Sample)

Summary

Radio observations of (U)LIRGs at the highest resolution and sensitivity are extremely useful to: (i) discern SB from AGN driven activity in the innermost regions; (ii) determine their CCSN rate; and (iii) test the IMF of the massive stars.

Summary

EMERLIN + VLBI radio searches on large samples needed to get meaningful statistical results (=> LIRGI: It will allow to establish a phenomenological sequence and timescale for the evolution of a nuclear starburst for a statistically significant sample of (U)LIRGs in the local universe).

Some notes of interest about eMERLIN (and probably SKA)

- Lack of short baselines → Loss of sensitivity
- At 18cm, the PB is of around 15 arcmin: you can find a point-like source in the FoV of the target source →
 Phase-Selfcal on the target can be possible.
- On the other hand, strong sources, with a flux density of the order of the phase-calibrator, can be within the PB → Difficulties for the amplitude selfcal
- When the **interferometric array is not homogeneous,** the PB for different dishes can be different. If there are sources close to the PB boundaries, the selfcalibration has to be done in different steps.

Some notes of interest about eMERLIN (and probably SKA)

- Reprocessing can be necessary in many cases: Splitting the FoV in different facets; shifting the phase-reference position; ...
- eMERLIN could be a good laboratory: visibilities can be stored, reprocessed, algorithms for image reconstruction can be tested ...
- Extension to **X-band** (Band 5) and **S/X** (Spectral Information) can be extremely interesting for LIRGI