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One finds, using (7):
4p= —p,O)wr)™(sin w7)

+#,(0)@r)~'(1 — cos @), 0, 1,(0)] 79, B,,  (9)
showing that the x component of the momentum is a factor
of order 1/w7 smaller than the z component. Typically,
7~1073 sec, so, for w~10"'! rad/sec, this factor is about
1078, Hence, the classically expected trace of the magnetic

moments on a screen behind the magnet will be a very nar-
row vertical line.

*'We regret to note that Richard Mattuck died on 5 May 1982, to our
sorrow and loss.

'See, for example, E. Merzbacher, Quantum Mechanics (Wiley, New
York, 1970), p. 252.

ZR.P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on
Physics (Addison-Wesley, New York, 1964), Vol II, p. 35-3.

*Unpublished communication.

Hyperfine splitting in the ground state of hydrogen
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The hyperfine structure of atomic hydrogen is derived in a simple and self-contained way that
makes the theory accessible to advanced undergraduates in a first course on quantum mechanics.

L. INTRODUCTION

The electron and the proton in atomic hydrogen consti-
tute tiny magnetic dipoles, whose interaction energy varies
according to the relative orientation of their dipole mo-
ments. If the spins are parallel (or, more precisely, if they
are in the triplet state), the energy is somewhat higher than
it is when the spins are antiparallel (the singlet state). The
difference is not large, amounting to a mere 6 X 107 °¢eV, as
compared with a binding energy of 13.6 eV and typical fine
structure splitting on the order of 10~* €V.! Nevertheless,
this “hyperfine” splitting is of substantial interest—indeed,
before the discovery of the 3 °K cosmic background radi-
ation,” the 21-cm line resulting from hyperfine transitions
in atomic hydrogen was widely regarded as the most perva-
sive and distinctive radiation in the universe.?

Hyperfine structure is seldom treated in elementary
quantum mechanics texts, and this is unfortunate because
the calculation is really quite simple—easier, certainly,
than the fine structure, and perhaps more illuminating.
The reason for avoiding it probably has to do with a rather
subtle point in classical electrodynamics (a matter, in fact,
of some interest in its own right), to wit, the calculation of
the energy of interaction betwéen two magnetic dipoles.
My purpose here is to show that this problem is by no
means inaccessible to advanced undergraduates and, in
fact, serves as a nice application both of electrodynamics
and of quantum theory.*

Because students generally find electric dipoles easier to
think about than magnetic dipoles, I begin (in Sec. IT) with a
calciilation of the electric field of an electric dipole. Then,
in Sec. III, I apply essentially the same techniques to obtain
the magnetic field of a magnetic dipole. In Sec. IV I work
out the formula for the interaction energy of two magnetic
dipoles. Up to this point the calculation lies entirely within
the realm of classical electrodynamics; the quantum me-
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chanics enters only in the final step, where the classical
interaction energy is interpreted as the hyperfine structure
Hamiltonian, and the energies of the singlet and triplet spin
states are evaluated in first-order perturbation theory. The
resultis compared with experimental measurements of fan-
tastic precision, and some comments are made concerning
hyperfine splitting in positronium, muonium, and muonic
hydrogen. Section V offers some physical insight into the
question of why the singlet configuration has the lower
energy.

I1. FIELD OF AN ELECTRIC DIPOLE

In mks units, the potential of an ideal electric dipole is
given by’

1 pt
»r 1
dme, 1 0

where p is the dipole moment and r is the vector from the
dipole to the point of observation (r is its magnitude and
# =1r/r). Taking the gradient of ¥, we obtain the dipole
field

Vir)=

1

7€
But this familiar result® cannot be correct, for it is incom-
patible with the following general theorem,’” which applies
to all static charge configurations.

Theorem 1. The average electric field over a spherical
volume of radius R, due to an arbitrary distribution of sta-
tionary charges within the sphere, is

i .

-2, (3)
47¢, R

where p is the total dipole moment with respect to the cen-

ter of the sphere.

Elr) = % (307 —p] - @)

E =

ayv
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Fig. 1. Average field, over a sphere, due to a point charge at 4.

Proof: The average field due to a single charge ¢ located
at point 4 within the sphere (Fig. 1) is given by
E,, =11 J.—g—?dr,
T 4mey J r?
where 7 = ¢7R * is the volume of the sphere. But this is

exactly the same as the field that would be produced at 4 by
a uniformly charged sphere carrying a charge density

p = — q/7. The latter is easily obtained by application of
Gauss’s law®:
1
E=—ops,
3¢, P

where s is the vector from the center of the sphere to 4. It
follows that the average field over a sphere due to a single
point charge is

g —__1 g

= 4me, R
For an arbitrary distribution of charges within the sphere,
gs is replaced by

Zqisi =p

(the total dipole moment of the sphere), and the theorem is
proved.

Let us apply this theorem to the simplest possible case:
an ideal dipole at the origin, pointing in the z direction (Fig.
2). If we take the dipole field (2) as it stands, we have

g, =11

av
7 47e,

Pf—1—3(300529— 1)r?sin @drdodg . (4)
r

But the 0 integral gives zero, while the r integral is infinite,
so the result is indeterminate. Evidently Eq. (2) is incor-
rect—or at best ambiguous. What has gone wrong? The
source of the problem is the point 7 = 0, where the potential
of the dipole is singular. Our formula for the field is unob-
jectionable everywhere else, but at that one point we must
be more careful.

An ideal dipole is, after all, the point limit of a real (ex-
tended) dipole, so let us approach it from that perspective.
The usual model—equal and opposite charges + g sepa-
rated by a displacement s, with p = gs—is cumbersome, for
our present purposes. More tractable is a uniformly polar-
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Fig. 2. Ideal dipole at center of sphere.

ized sphere, of radius a, polarization P, and dipole moment
p=4na’P. (5)
It is well known® that the field outside such a sphere is given
precisely by Eq. (2):
1
E,(r)=
4me,

while (surprisingly) the field inside the sphere is uniform
(Fig. 3):

LB3e#r—pl forrsa, (6)
-

E,r)= — forr<a. 7

1L e
47e, a°
In the ideal dipole limit (a—0) the interior region shrinks to
zero, and one might suppose that this contribution disap-
pears altogether. However, E,, itself blows up, in the same
limit, and in just such a way that its integral over the
sphere.

1 p P
Eind’r=<————) srady= — 2, 8
f 4re, a® (3m7) 3€, ¥
remains constant, no matter how small the sphere be-

Zl

Fig. 3. Field of a uniformly polarized sphere.
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comes. We recognize here the defining conditions for a
Dirac delta function; evidently, as a—0 the field inside the
sphere goes to

1
E,.(r)= ——p&r). 9
(r) 3, po(r) (%)
We may write the field of an ideal dipole as follows:
aa 1
Er) = P —p] — —p&(r), (10)
3¢,

on the understanding that the first term applies only to the
region outside an infinitesimal sphere about the point r = 0.
With the radial integral thus truncated, Eq. (4) now yields
zero unambiguously—but there is an extra contribution to
E,,, coming from the delta function:

AL s )d—ﬂ__l__l’_
Eav_r.[( 3601)5(1‘) T 47T€0R3’ (11)

which is exactly what Theorem 1 requires. Although the
delta function only affects the field at the point » = 0, it is
crucial in establishing the consistency of the theory.'®

I11. FIELD OF A MAGNETIC DIPOLE

The vector potential of an ideal magnetic dipole is given
byl 1

Alr) = Ho mx? , 12

(r) o (12)

where m is the dipole moment. Taking the curl of this po-
tential we obtain the dipole field:

B(r) = (uo/47)(1/r *)Bm#? — m] . (13)

This familiar result'? is identical in form to the electric field
of an electric dipole {Eq. (2], and once again it cannot be
correct, for it is incompatible with the following general
theorem.'?

Theorem 2. The average magnetic field over a spherical
volume of radius R, due to an arbitrary configuration of
steady currents within the sphere, is

B,, = (uy/47)2m/R°, (14}
where m is the total dipole moment of the sphere.
Proof: By definition
Bav=iJBdr, (15)
T

where 7 = 47 R 3, as before. Writing B as the curl of A, and
invoking the vector identity*

J (VXA)dr = — Axda,
volume surface
we have
B, = ——1~J-A><da,
T

where da is an infinitesimal element of area at the surface of
the sphere, pointing in the radial direction. Now, the vector
potential is itself an integral over the current distribution'®

A=to f I ar, (16)
andhence
B, — —L e Jf L (Ixdajdr. (17)
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Fig. 4. Geometry for Eq. (17).

I propose to do the surface integral first, setting the polar
axis along the vector (s) from the center to dr (Fig. 4), so
that

r=(R?+s*—2Rscos 6)'/2,
da=R*sin0d0ds R,
and therefore

fida =J-(R2 + 5% —2Rscos )" /2
r

XR?sin0dfdg (cos 3)=4ms.
Finally, the volume integral yields

= — “0 J(JXs)dT-'uo 2m
R3

av

where
m=§f(s><.l)d7' (18)

is the total dipole moment of the sphere.'® Q.E.D.

Suppose we wish to check Theorem 2 for the simplest
possible case: an ideal magnetic dipole m at the origin. If we
attempt to calculate the average magnetic field, using Eq.
(13), we obtain the same indeterminate integral as before
[Eq. (4))- Once again, the source of the problem is the point
r = 0; there is an extra delta-function contribution to the
field, which Eq. (13) ignores.

In order to obtain this extra term, we treat the ideal di-
pole as the point limit of a uniformly magnetized sphere, of
radius g, magnetization M, and dipole moment

m=4%ma’M. (19)
The field outside such a sphere is given precisely by Eq. (13):

%:;_ :15[ 3m#F —m] forr>a, (20)

B, (r) =
while the field inside the sphere is uniform'’: _
B, (r) = (uo/2mm/a®> forr<a. (21)

In the ideal dipole limit (¢—0) the interior region shrinks to
zero, but the field goes to infinity; their product remains
constant:

me dT———(————)(31Ta ) =%pom. (22)
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As a—0, therefore, the field inside the sphere goes to a delta
function:

B,, (r) =  uom&’(r) . (23)

The magnetic field of an ideal dipole can thus be written

B(r) = 22 L [3(m# — m] +3 poms’(r), (24)
Ar r

with the understanding that the first term applies only to
the region outside an infinitesimal sphere at the origin. The
average field (over a sphere of radius R ) comes exclusively
from the delta-function term:

m
j[z Om63(l.)]d7._ Ho F’
which is exactly what Theorem 2 requires. Once again, al-
though it only affects the one point 7 = 0, the delta-func-
tion contribution is essential for the consistency of the
theory.'®

IV. HYPERFINE STRUCTURE IN THE GROUND
STATE OF HYDROGEN

The energy of a magnetic dipole m, in the presence of a
magnetic field B, is given by the familiar formula'®

H= —mB. (25)

In particular, the energy of one magnetic dipole (m,) in the
field of another magnetic dipole (m,) is

H= — %o L i3m pym, 5 —

m,-m,] — %l‘oml‘m253(r) ’
47 r3

(26)

where r is their separation. The formula is symmetric in its
treatment of m, and m,, as of course it should be—it repre-
sents the energy of interaction of the two dipoles. In most
applications m, and m, are physically separated, and the
delta-function term can be ignored; however, it is precisely
this part which accounts for hyperfine splitting in the
ground state of hydrogen.

In first-order perturbation theory, the change in energy
of a quantum state is given by the expectation value of the
perturbing Hamiltonian.?’ The ground-state wave func-
tion for atomic hydrogen is*'

¢0 — (ﬂ'a3)_l/2 e—r/a|s> , (27)

where a = 0.52917706 A is the Bohr radius®? and |s) den-
otes the spin of the electron. Treating the dipole-dipole
interaction [Eq. (26)] as a perturbation, the energy of the
ground state is shifted by an amount

E'= f ¥ Hyydr . (28)

Because 9, (and indeed any / = O state} is spherically sym-
metrical,® the @ integral gives zero, just as it did in Eq. (4).
Accordingly

E'= —3po(mymy)|9y(0))* = — 3 (uo/ma’){m,-m,) .(29)

Here m, is the magnetic dipole moment of the proton and
m, is that of the electron; they are proportional to the re-
spective spins:

m;, = ypsp’ m, = — Yese’ (30)

where the ’s are the two gyromagnetic ratios® (the minus
records the negative charge of the electron). Thus

E'=3%u/ma)y.7,(S.S,) . (31)
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In the presence of such “spin-spin coupling,” the z com-
ponents of S, and S, are no longer separately conserved;
the “good” quantum numbers for the system are rather the
eigenvalues of the fotal angular momentum

J=S,.+8S,. (32)
Now
=(S, +S,) =
so that
S.S, =4J*—82-S}).
The electron and proton carry spin-, so the eigenvalues of

S:+S;+28.S,,

SZandS? are} #°. The two spins combine to form a spin-1

tnplet ¥ F_ 2ﬁ2) and a spin-0 singlet { J > = 0).”° Thus
1#7 (triplet)
. == 4 33
(S:5,) [ —3# (singlet) (33)
and hence
=3 ,u0 ﬁ { 1 (triplet) 4
E Ye¥r | 3 (singlet)” (34

Evidently the singlet state, in which the spins are antiparal-
lel, carries a somewhat lower energy than the triplet combi-
nation {Fig. 5). The energy gap is

AE, 4 =} (o /1Ny, . (33)
Now, the gyromagnetic ratios are given by
=(e/2m)g, (36)

where e is the proton charge, m is the mass of the particle,
and gisits “g factor” (2.0023 for the electron, 5.5857 for the

proton).?® So, finally,

AE, , = (u e’ /6ma’) g, g,/m ,m, = 5884X107° eV .
(37)

The frequency of the photon emitted in a transition from
the triplet to the singlet state is then

v=AE/h=1422.8 MHz, (38)
and its wavelength is

A=c¢/v=21.07cm. (39)
The experimental value is*’

v = 1420.405 751 766 7 MHz ; (40)

the 0.2% discrepancy is attributable to quantum electro-
dynamical corrections.?®
It is instructive to express the hyperfine splitting [Eq.

{37)] in terms of the binding energy (R = 13.6058 V) of the
ground state:
AE, ., =4(R*/m,c%g. g, . (41)
triplet
unperturbed ,"/
L}
AE
\“
I\\
\\
\\ singlet

Fig. 5. Hyperfine splitting in the ground state of hydrogen.
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By constrast, the fine structure goes like (R 2/m,c?), and is
therefore typically greater by a factor on the order of
(m,/m,) = 1836. In the case of positronium, where the
proton is replaced by a positron, the fine and hyperfine
splittings are roughly equal in size. If we apply Eq. (37) to
positronium (using the reduced mass, of course, in calculat-
ing the “Bohr radius”), we obtain

AE, =1(1+ me/mp)s( 8./8,)m,/m.)
XAE,,, =4.849% 1074 eV, 42)

as compared with an experimental value of 8.411x10*
€V.? The large discrepancy is due primarily to pair anni-
hilation, which splits the levels by an additional amount,
34E,.,”° and does not occur, of course, in hydrogen.
Muonium {in which a muon substitutes for the proton) of-
fers a cleaner application of Eq. (37). The g factor of the
muon is 2.0023,% (identical, up to corrections of very high
order, with that of the electron), so
1 3
AE,.. = (M) £ ™ 4F,
l+m,/m,] g, m,
= 1.8493X 10 %V, (43)
which compares very well with the experimental value?!
1.845 888 5 10~%V .

The 0.2% discrepancy is, again, a quantum electrodynami-
cal correction.** Incidentally, the hyperfine splitting in
muonic hydrogen (muon substituting for electron) would
be “gigantic™:

AE, ., = (_.1 + ’"_P/'"e)l 8u Me 4p
uhyd 1+m,/m,] g m, hyd
=0.18296¢V, (44)

which corresponds to a wavelength of 67 800 A, in the in-
frared region. However, as far as I know this quantity has
not yet been measured directly in the laboratory.*

V. WHY IS THE SINGLET LEVEL LOWER?

In the singlet state, the proton and electron spins are
antiparallel, which is to say that their magnetic moments
are parallel. Why should this be the configuration of lowest
energy? On a formal level, it is a consequence of the sign of
the delta-function term in the interaction energy [Equation
(26)]; electric dipoles, by contrast, would line up antiparal-
lel [compare Egs. (10) and (24)). But we would like to un-
derstand this on a more intuitive basis.

Imagine two compass needles, held a distance r apart, at
angles 6, and 6, to the line joining them (Fig. 6). If 7 is
substantially greater than the length of each needle, they
interact essentially as ideal magnetic dipoles, and the ener-
gy of the system is given by the first term in Eq. (26):

Fig. 6. Interaction of two magnetic dipoles.
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o

+

...... .& (c)
r

Fig. 7. Stable configuration for electric dipoles: (a) 7> s; (b) 7 <s; and (c}
r—0.

...... —@....... (<)

Fig. 8. Stable configuration for magnetic dipoles: (a) 7 > d; (b) r < d; and (c)
r—0.
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@) (®)

Fig. 9. Stable configuration for bar magnet: (a) solid; (b) penetrable.

w=Lto L mym,[cos{@, — 8,) —3cos G, cos 6,] . (45)
47 r’

It is easy to show that the minimum occursat, =6, =0

(or, equivalently, at 6, = 6, = 7); if they are free to rotate,

then, the compass needles will tend to line up parallel to

one another, along the common axis. And the same goes for

electric dipoles.

But what happens as we bring them closer together?
Consider first the case of electric dipoles—plus and minus
charges separated by a distance s. As long as r is greater
than s, they line up along the axis [Fig. 7(a)], but when the
positive end of one meets the negative end of the other,
these ends stick together and move off the line of centers
[Fig. 7(b)), until finally, as 0, the two dipoles are orient-
ed antiparallel to one another, and perpendicular to the line
joining them [Fig. 7(c)].

If we now repeat the process with magnetic dipoles—
represented by circular current loops of diameter d—no
such reversal occurs. Since parallel currents attract, there
will occur a time when the circles tilt over to touch one
another [Fig. 8(b)], but as »—0 the loops come together
with their currents in the same direction [Fig. 8(c)]. The
stable configuration for superimposed magnetic dipoles,
then, is one in which they lie parallel to each other, and to
the line joining them.

Of course, if you conducted this last experiment using
long thin bar magnets, instead of current loops, to repre-
sent the magnetic dipoles, you would arrive at the opposite
conclusion: they line up antiparallel, like electric dipoles,
with the north pole of one against the south pole of the
other [Fig. 9(a)]. But this is an artifact of the solidity of iron,
having nothing to do with the magnetic coupling. If the two
bars could interpenetrate, they would prefer to line up par-
allel to one another, as before [Fig. 9(b)).

On purely classical grounds then, superimposed magnet-
ic dipoles tend to align themselves parallel to one another,
and for this reason we should expect the singlet configura-
tion in the ground state of hydrogen to carry the lower
energy. It is well to remember that the hyperfine splitting is
due to a contact interaction, and one’s intuitions, based on
the coupling of distant dipoles, may be deceiving. We have
seen this in the contrasting behavior of electric and magnet-
ic dipoles at very short range. Indeed, if the magnetic mo-
ments of electrons and protons were actually due to north
and south magnetic monopoles, analogous to electric di-
poles, then the triplet configuration would carry the lower
energy.
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