
Technical Case for an Observing Proposal

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

Robert Laing Anita Richards

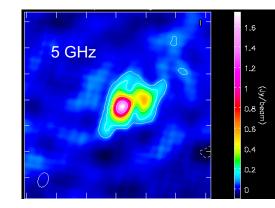
May 2021

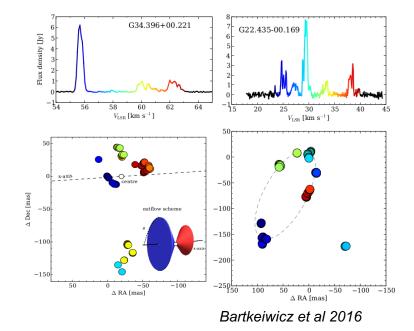
Proposal Technical Justification

- Suppose you have a good science case
 - Is your observation technically feasible?
 - What instrument is best?
 - What is the optimum instrumental setup (resolution etc.)?
 - How long do you need to observe/What noise level?
- All observatories will require this information in a proposal
 - Technical Justification section (typically 1 page)
 - Often requires the use of a specific tool (e.g. to calculate noise level/observing time)
- Plenty of help available
 - Start with Observatory web pages (examples later)

Things to think about (1)

- What wavelength?
 - Spectral lines + redshift/velocity \rightarrow wavelength (λ)
 - Choice of line (e.g. CO transition) or is there only one possibility (HI)?
 - Continuum emission is trickier:
 - do you need spectral information?
 - trade-offs between sensitivity and flux density?
- What spatial resolution?
 - Resolution (λ/D_{max}) + wavelength (λ) \rightarrow maximum baseline D_{max}
- What spectral resolution and range?
 - Number and width of spectral channels
- Field of View
 - Maximum scale of structure $(\lambda/D_{min}) \rightarrow minimum$ baseline D_{min}
 - Primary beam $(\lambda/d) \rightarrow dish \text{ or station size } d$
 - Do you need a mosaic of pointings to cover your field?
- How many targets?
- Where is my target (North or South?)
- What arrays can do what I want?


Things to think about (2)



- Sensitivity
 - Key parameter is surface brightness
 - Is your target resolved, or is it a point source?
 - If resolved:
 - Total flux density S (Jy), solid angle on the sky Ω (arcsec²), beam area B (arcsec²)
 - Work out S(B/Ω) (Jy/beam)
 - Start from earlier observations or theory
 - Bandwidth Δv is important (rms noise $\propto \Delta v^{-1/2}$)
 - Use a sensitivity calculator to work out how long an observation you need (links later)
- Is your observation feasible?
- If not:
 - Is the resolution too high?
 - Do you have too many targets?
 - Could you pick a better frequency?
 - Is there a better array?

Example projects

- Extra-galactic double source 3C345
 - Core+jet? Gravitational lens? Double?
 - Observe at different frequency or resolution
 - Spectral index
 - Resolve more detail
- 6.7 GHz methanol maser in star-forming region
 - Does single-dish spectrum
 - come from a disc?
 - An outflow?
 - Spectral line VLBI at 6.7 GHz
 - Or methanol transitions at other frequencies

5

Some example links

- ALMA
 - Introduction <u>https://almascience.eso.org/documents-and-tools/cycle-8-documents#section-0</u>
 - Sensitivity Calculator https://almascience.eso.org/proposing/sensitivity-calculator
 - Archive <u>https://almascience.eso.org/asax/</u> or <u>http://jvo.nao.ac.jp/portal/alma/archive.do</u>
 - Simulator <u>http://almaost.jb.man.ac.uk/</u>
- EVN
 - Introduction <u>https://www.evlbi.org/using-evn</u>
 - Observation Planner <u>https://planobs.jive.eu/</u>
 - Archive <u>http://archive.jive.nl/scripts/avo/fitsfinder.php</u>
- Jansky VLA
 - Introduction <u>https://science.nrao.edu/facilities/vla/docs/manuals/propvla</u>
 - Sensitivity Calculator <u>https://obs.vla.nrao.edu/ect/</u>
 - Archive https://science.nrao.edu/facilities/vla/archive/index
- VLBA
 - Introduction <u>https://science.nrao.edu/facilities/vlba/introduction-to-vlba</u>
 - Archive as VLA
- MeerKAT
 - Call for proposals <u>https://aas.org/posts/news/2020/07/meerkat-radio-telescope-call-observing-proposals</u>
 - Archive https://skaafrica.atlassian.net/servicedesk/customer/portal/1/topic/bc9d6ad2-8321-4e13-a97a-d19d6d019a1c/article/302546945 (needs account)

More things to think about (1)

- Calibration
 - What's the right calibration strategy?
 - If you are lucky, the Observatory will do most of this for you but it is always good to understand why – and sometimes they leave it to you
 - Which calibrators and how often to observe them?
 - Can you self-calibrate?
 - Overheads
 - Have you included a reasonable overhead for calibration, slew time?
- Imaging
 - How complex a field?
 - Long track or snapshot?
 - Do you need to combine arrays or configurations?
 - Some arrays have simulation tools to help you
 - Import a model (from theory or earlier observations)
 - Predict the image for realistic noise and calibration errors

SUARE KILOMETRE ARRAY

More things to think about (2)

- Special considerations
 - Polarization? Can you calibrate?
 - Do you need a special observing mode?
 - Do you have time constraints (simultaneous observations at another waveband)
 - Targets of opportunity?
 - Do you need additional calibration (e.g. for precise astrometry)?
- Proposal pressure
 - Some arrays are in high demand; others less so
 - Some parts of the sky are more popular than others
 - Some projects can only be scheduled in really good weather (e.g. night time, low water vapour column, stable ionosphere) is yours very demanding?
 - Check these on telescope web site

More things to think about (3)

- Has someone done it before?
 - Literature
 - Look in telescope archives
 - Reanalyse old data
 - Better reduction with modern tools?
 - Good enough? if so, do not re-apply.
- If not good enough
 - May help you to give a better justification
 - Better estimate of required resolution and sensitivity
 - Model for imaging simulations
 - May be able to combine with new data