Summary of week 1

DARA Zambia 2018 Hannah Stacey

What have we learned so far?

Lectures 1-4

- Principles of interferometry
- The two-element interferometer
- Aperture synthesis and the u-v plane
- Understanding Fourier transforms

Lectures 5-9

- Principles of calibration
- The measurement equation and sources of errors
- Imaging and image fidelity limitations
- CLEAN and deconvolution
- Choosing inputs and recognising errors

A two-element interferometer

When antennas Though ante are located around are sparsely the North Pole distributed...

From the viewpoint of the target object, the spaces are filled by the antennas moving along the rotation of the earth. The area covered by the antennas can be regarded as a single virtual giant telescope.

uv plane

• Direct relationship between x,y and u,v

Furrier transforms

High pass

Low pass

Calibrating data

Initial calibration

- Correcting Tsys and antenna table in measurement set
- Flagging data
- Deriving delay corrections (phase slope with frequency) for a phase calibrator
- Deriving phase corrections (phase change with time) for a phase calibrator
- Deriving bandpass corrections (gain across each spw)

CASA measurement sets

DATA				MODEL				CORRECTED				WEIGHTS				ETC
RR	LL	RL	LR	RR	LL	RL	LR	RR	LL	RL	LR	RR	LL	RL	LR	
A _{RR,} Φ _{RR}				A _{RR,} Φ _{RR}				A _{RR,} Φ _{RR}				WRR				

Initial delay correction

Phase vs. Frequency Baseline: EF@EVN:01 & HH@EVN:11_8042333m

Initial phase correction

Initial bandpass correction

Amp vs. Frequency

Calibration with a phase calibrator source

Refining the delay corrections

J1640+3946 (phase cal)

Refining the phase corrections

J1640+3946 (phase cal)

Refining the amplitude corrections

J1640+3946 (phase cal)

Making images

Making images with CLEAN

J2000 Right Ascension

CLEAN & self-calibration

CLEAN & self-calibration

3C345 (after selfcal)

Next week

- Recognising RFI and flagging
- Advanced imaging of radio galaxy 3C277.1
- Calibrating and imaging spectral line data
- Martin's science talk
- Identifying errors in your data
- The life cycle of a project
- Fringe fitting
- Proposals, projects and academia