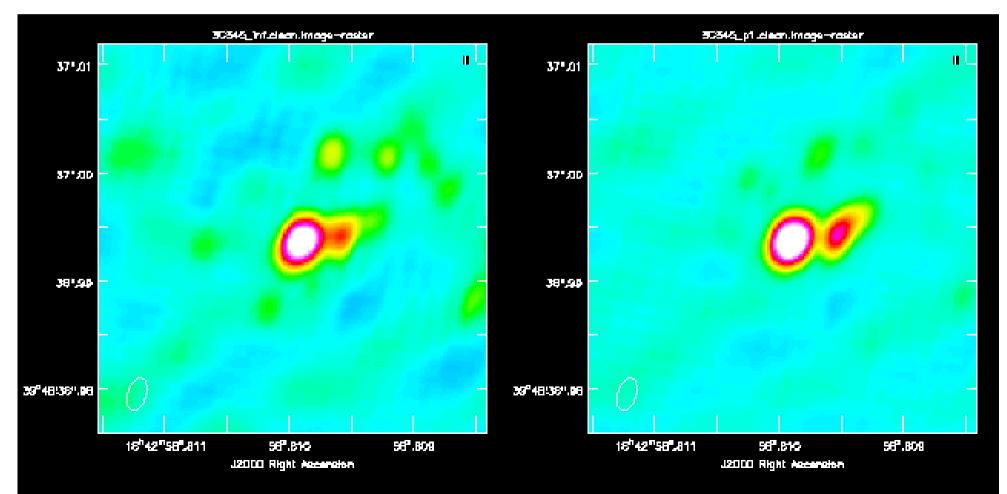
Tailoring calibration

Original slides by Anita Richards

Acknowledgements: Robert Laing (ESO), Rick Perley (NRAO)



Tailoring calibration

- How do you know what parameters to set?
 - What values?
 - e.g. what solution interval for phase calibration?
- May depend on physical/instrument properties which are fixed for a given observation, for example:
 - $T_{\rm sys}$ tables replace -ives by interpolated values
 - System temperature cannot be negative!
 - Image pixel size: >3 pixels across synthesised beam θ
 - Use $\theta = \min(\lambda)/\max(baseline)$, explained in Imaging talk
 - Easy to pipeline

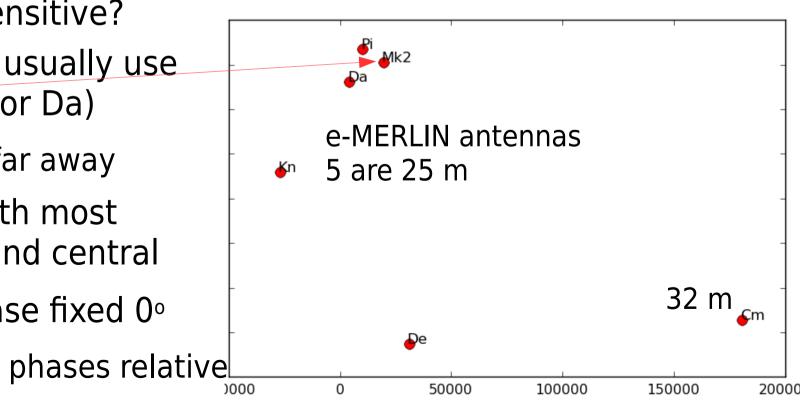
Observation-dependent parameters

- Calibration strategy depends on
 - Observing frequency, baselines, bandwidth etc.
 - Weather and source elevation
 - Calibration source properties
- Imaging depends on all these and on science goals
 - Faint, extended source?
 - Need very accurate astrometry?
 - Very bright, self-calibratable source?
 - Spectral lines?
 - Sources all over the field of view?

Chosing reference antenna

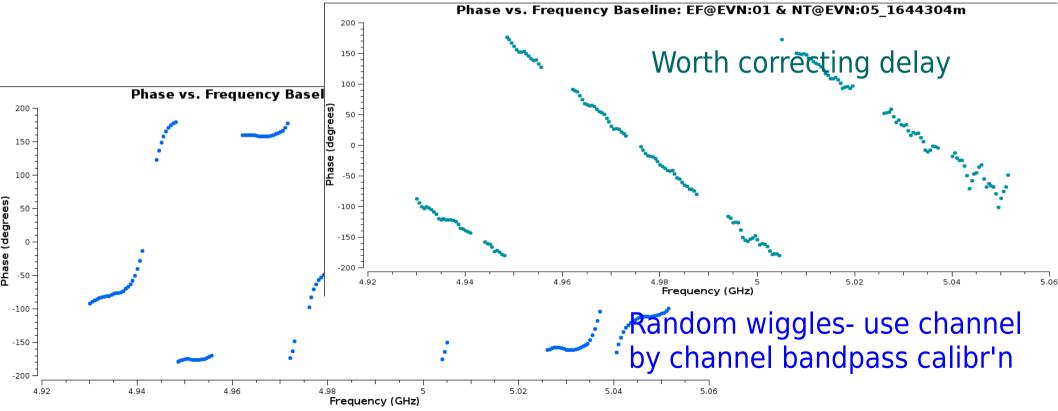
- The antenna with the best chance of good solutions to all other antennas
 - The one with the most short baselines?
 - Greater atmospheric differences on long baselines
 - Most sensitive?
- e-MERLIN: usually use Mk2 (or Pi or Da)
 - Cm too far away
- EVN: Ef both most sensitive and central
- Refant phase fixed 0°

All other phases relative



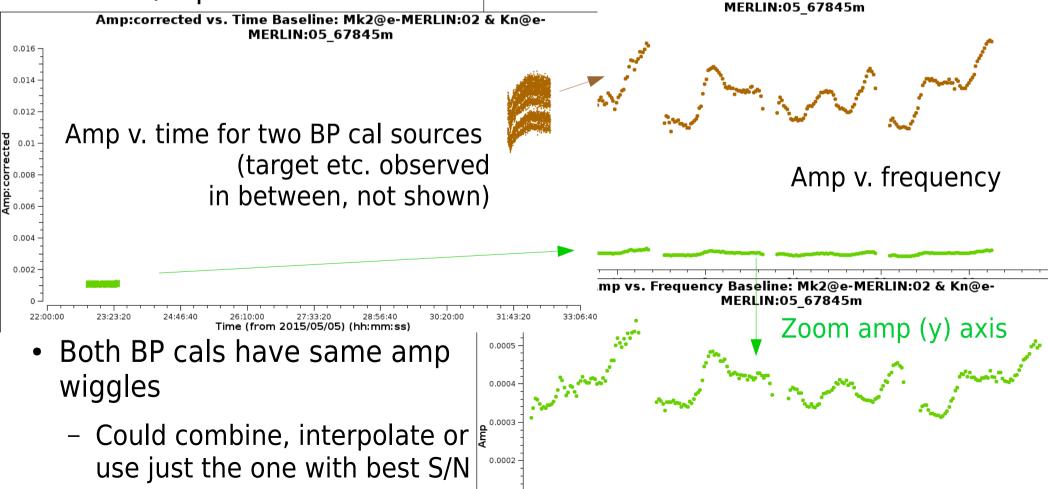
Delay calibration

- Delay corrections for linear phase gradients:
 - Inspect phase v. frequency
 - Only worth correcting delay if you can see it
 - Usually stable for hours but averaging solint limited (~scan) by time-dependent phase stability



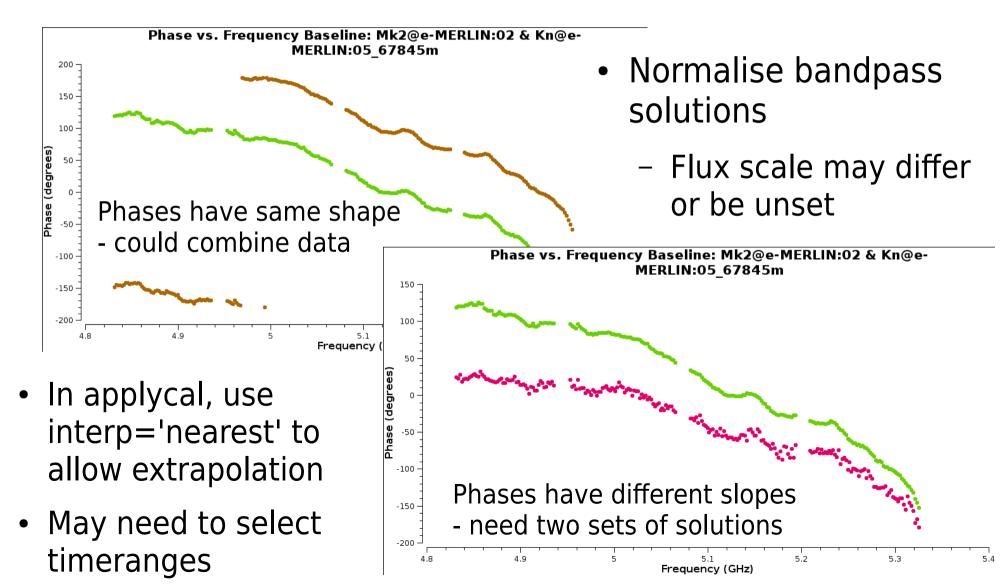
Bandpass calibration

- Correct BP cal phase v. time first (see following slides)
 - In Bandpass, average in time for as long as possible for best S/N per channel



Bandpass calibration

• Check BP data phase v. frequency also



Visibility errors and noise

• Lowest possible noise is 'thermal' limit based on T_{sys} :

$$\sigma_{sys} = \frac{\langle T_{sys} \rangle}{\eta_A A_{eff} \sqrt{N(N-1)/2} \quad \Delta \nu \quad \Delta t N_{pol}}$$

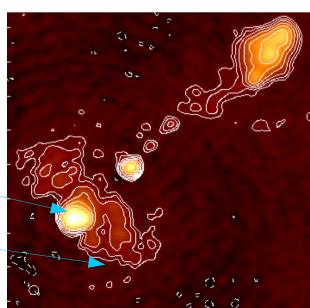
Where
$$T_{sys} = \frac{1}{\eta_A e^{-\tau_{atm}}} \left[T_{Rx} + \eta_A T_{sky} + (1-\eta_A) T_{amb} \right]$$

- So you can only improve on this by
 - Bigger/more efficient antennas (A_{eff} , η_A) or more (N)
 - Lower noise Rx and/or $T_{\rm sky}$ (observing conditions)
 - Or, for given array, observe for longer/wider bandwidth
- But other factors often limit the noise....

What accuracy is needed?

- What is the effect on imaging of visibility errors?
 - How good does the calibration need to be?
 - 'Received wisdom' provides properties and suggested solution intervals, etc. for a given array
 - Good to know that there is a theoretical basis, though
 - Massive data sets: much trial and error takes too long
- How bright is your target?
 - Is the peak bright enough to self-cal?
 - How faint are the weakest

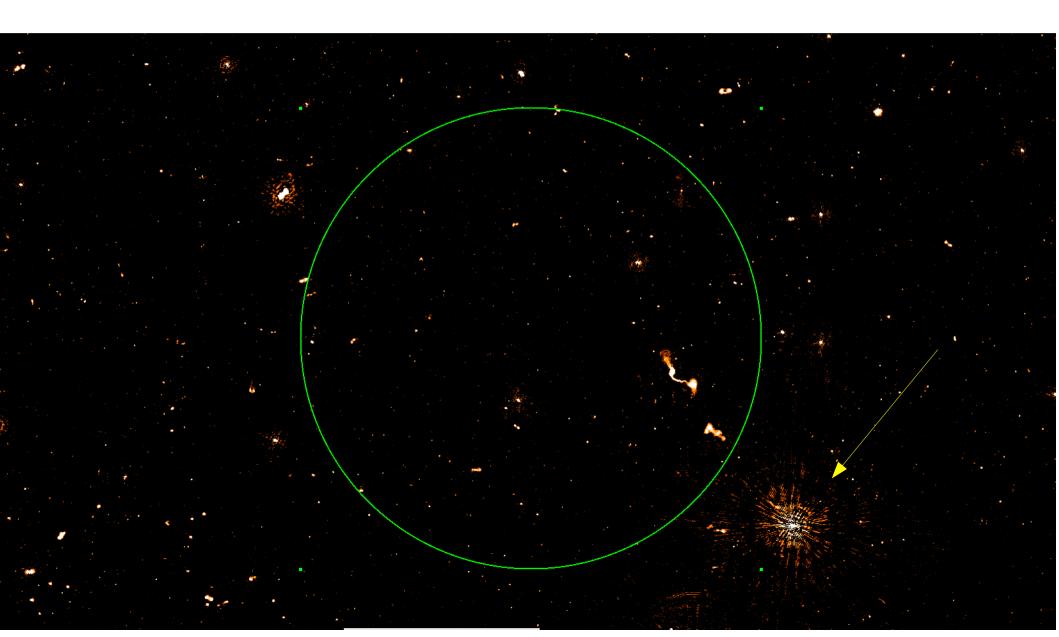
features of interest?



What accuracy is needed?

- Faint target: need to reach thermal noise
- Bright target: may be dynamic range limited
 - Need the best possible calibration and imaging
 - If self-calibration is possible it just needs to be 'good enough;
- Astrometry:
 - Need high phase accuracy for position accuracy
 - Special strategies
 - Several phase reference sources
 - Can use multiple elevations/frequencies to measure delay and antenna positions with high accuracy
- Photometry
 - High phase and amplitude accuracy
 - Multiple calibration sources

Dynamic range limitation



Phase errors and dynamic range

- Simplified: flat, linear array, N antennas
 - Single integration observation of a point source
 - Direction such that we only need to consider *u* axis
 - N(N-1)/2 visibilities
- Each baseline visibility is a δ spike in the uv plane
 - All but one are 'perfect' (unit amplitude, zero phase)
 - These have $V(u) = \delta(u u_k)$ for the k^{th} baseline
 - Phase error on baseline length u_0 of ϕ_{ϵ} radians
 - $V(u) = \delta(u u_0) e^{-i\phi\varepsilon}$

Phase errors and dynamic range

- Image is formed by Fourier transform
 - $I(x) = \int V(u) e^{i2\pi u x} du$
 - Each baseline contributes at position u_k and complex conjugate $-u_k$ in the visibility plane
- Evaluating the term in the integral for each of the [N(N-1)/2]-1 good baselines gives $2\cos(2\pi u_k x)$
- Bad baseline gives $2\cos(2\pi u_0 x \phi_{\epsilon})$
 - $\sim 2[\cos(2\pi u_0 x) + \phi_{\epsilon} \sin(2\pi u_0 x)]$ for small ϕ_{ϵ} (in radians)
- The image integral thus sums to $I(x) = 2\phi_{\epsilon} \sin(2\pi u_0 x) + 2\sum_{k=1}^{N(N-1)/2} \cos(2\pi u_k x)$

Phase errors and dynamic range

• The synthesised beam is given by

$$B(x) = 2 \sum_{k=1}^{N(N-1)/2} \cos(2\pi u_k x) = N(N-1) \text{ for } u = 0$$

 Deconvolution is the subtraction of the beam from the image leaving the residual error

$$R(x) = \left[2\phi_{\epsilon} \sin(2\pi u_0 x) + 2\sum_{k=1}^{N(N-1)/2} \cos(2\pi u_k x) \right] - 2\sum_{k=1}^{N(N-1)/2} \cos(2\pi u_k x)$$

= $2\phi_{\epsilon} \sin(2\pi u_0 x)$

- an 'odd' sinusoidal function of amplitude $2\phi_{\epsilon}$, period $1/u_0$
- To maintain the flux scale, integrals are normalised: $\frac{R(x)}{N(N-1)} = \frac{AI(x)}{N(N-1)} - \frac{B(x)}{N(N-1)}$ Here, 'true' amplitude A = 1

Calibration errors and dynamic range

• The rms of the residual $R(x) = \frac{2\phi_{\epsilon} \sin(2\pi u_0 x)}{N(N-1)}$ over the whole map is $\sqrt{2} \phi_{\epsilon} / N(N-1)$

• For small phase error ϕ_{ϵ} , large N, the ratio of the peak / noise residual is thus

- Dynamic range $D_{\rm B}(\phi_{\epsilon}) \sim I(x) / R(x) \sim N^2 / \sqrt{2} \phi_{\epsilon}$
 - e.g., radians (5°)~0.09
- Amplitude error ε on a single baseline has the effect $V(u) = (1+\varepsilon)\delta(u - u_0) e^{-i\phi}$ leading (via a cos function) to

- Dynamic range $D_{\rm B}(\varepsilon) \sim N^2 / \sqrt{2} \varepsilon$

- A phase error of 5° is as bad as a 10% amp error
- Phase errors are sin (odd), amp are cos (even)

Calibration errors and dynamic range

- So far considered one-baseline error, one integration
- All baselines to one antenna affected by same error:
 - (N-1) bad baselines ($\sim N$ for large N)

 $- \boldsymbol{D}_{ant} = D_{B} / (N-1) = [N^{2} / (N-1)] / \sqrt{2} \phi_{\varepsilon} \sim \boldsymbol{N} / \sqrt{2} \phi_{\varepsilon}$

• If all baselines are affected by random noise,

 $- \boldsymbol{D_{all}} = D_{\rm B} / \sqrt{[N(N-1)/2]} = \sqrt{[N(N-1)/2]/\phi_{\epsilon}} \sim \boldsymbol{N}/\phi_{\epsilon}$

- These expressions are valid if errors are correlated in time, e.g. single phase-ref scan, not much change in u (or v)
- For M periods (scans?) between which noise is uncorrelated
 - Dynamic range is increased to $D_{\rm all} \sim \sqrt{\rm M} N/\phi_{\epsilon}$

Calibration for good dynamic range

- Implications so far: take a 10-antenna array
 - Twelve independent scans on a target, phase reference and other calibration applied, well edited
 - Residual phase scatter 20° : $D_{all} \sim \sqrt{M} N/\phi_{\epsilon}$
 - \sim 100 dynamic range limit
 - Can you improve by self-calibration?
 - No if map noise has reached the $T_{\rm sys}$ limit and remaining errors are pure noise. If not:
 - Maybe, if some antennas are still imperfectly calibrated
 - Calibrate per antenna, per scan (or longer)
 - Need potential S/N per interval high enough to get ϕ_ϵ <20°
 - See self-cal talk

Phase-referencing dynamic range

• Most correctable errors affect all baselines to an antenna

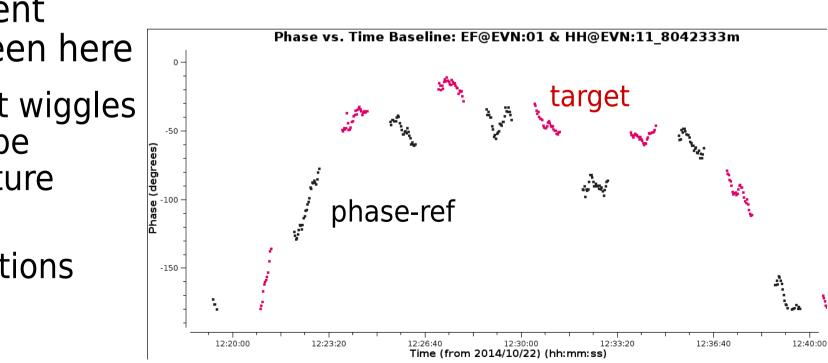
$$\sigma_{ant}(\delta t, \delta v) \approx \sigma_{array} \sqrt{\frac{N(N-1)/2}{N-3}} \sqrt{N_{spw}N_{pol}}$$

Solve separately for each spw, pol.

- Sensitivity calculators generally give σ per total b/w
 - 8 spw, 2 polarizations, 1 min, 10-ant EVN σ_{array} 0.15 mJy – from www.evlbi.org/cgi-bin/EVNcalc.pl
 - Sensitivity limit per antenna $\sigma_{ant} \sim 1.5$ mJy for 1 min
- Use $D_{\rm ant} \sim N$ / $\sqrt{2}\phi_{\epsilon}$, say want 5° phase accuracy
- $S_{\text{phsref}} / \sigma_{ant} = D_{\text{ant}} \sim N / \sqrt{2\phi_{\epsilon}}$ in radians
 - Need phase-ref flux density $S_{\rm phsref}$ > 120 mJy
 - In practice, need more to allow for bandpass etc. errors
 - This is assuming solutions per 1-min scan

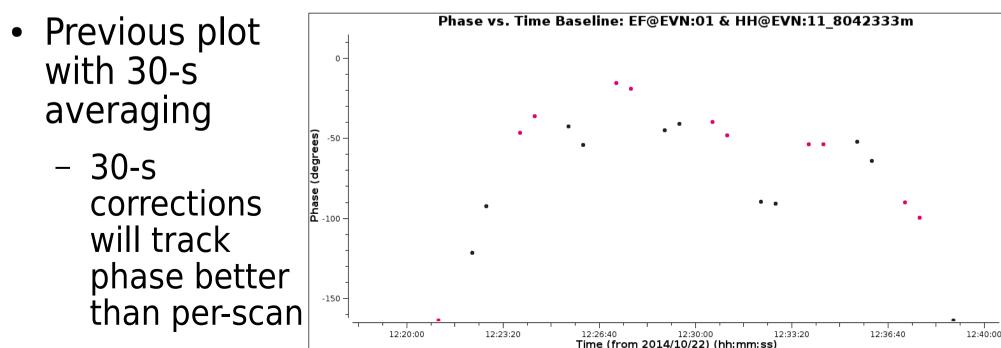
Time-dependent phase cal

- Apply bandpass/delay corrections
- Phase reference source:
 - Need to interpolate solutions to target
- Does the phase-ref phase track the target phase?
- Consistent trend seen here
 - Target wiggles may be structure
 - Some deviations



Time-dependent phase cal

- Need to interpolate phase-ref solutions to target
 - Ideally no more than 2 solutions per phase-ref scan
 - Allows simple linear interpolation
 - Must track phase properly
 - Check enough S/N in e.g. half scan
 - Seeing low scatter by eye is OK!



Time-dependent phase-cal

- Phase-ref very faint/fast-changing?
 - Average spw/pol to improve S/N?
 - Check bright cal source can't average spw or pol. if phase offsets
 - (can use BP cal to align if offsets are stable, if really necessary)

150

100

-50

-100

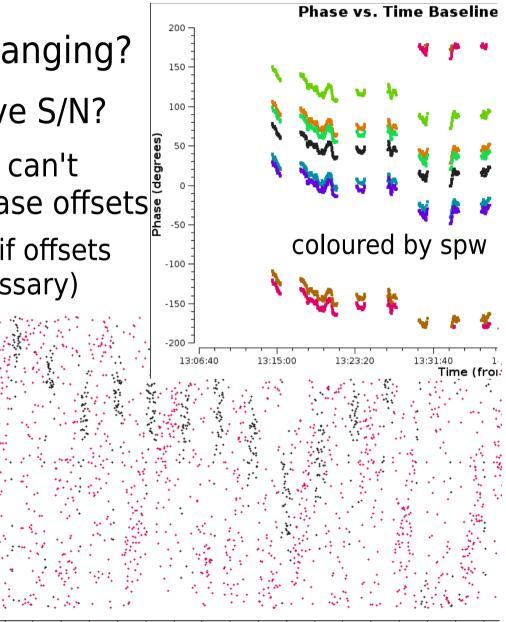
-150

24:13:20

24:46:40

^ohase (degrees)

- Fit spline or polynomial
- Can be fitted over several scans
- 1st order term is known as 'rate'



25:53:20

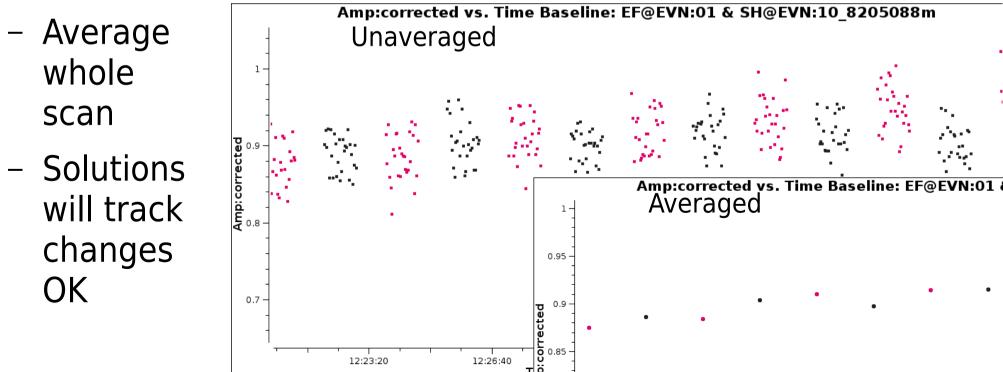
Time (from 2015/05/05) (hh:mm:ss)

26:26:40

27:00:0

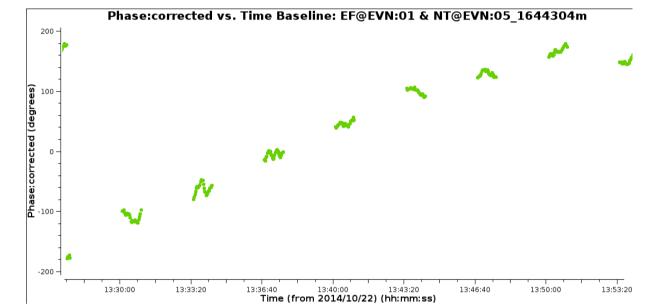
Time-dependent amp cal

- Apply phase solutions first to allow longer solint for amplitude calibration
 - Avoid decorrelation
 - If necessary, use shorter phase-only solint just for this
- Amp scatter per scan usually just noise



Phase transfer accuracy

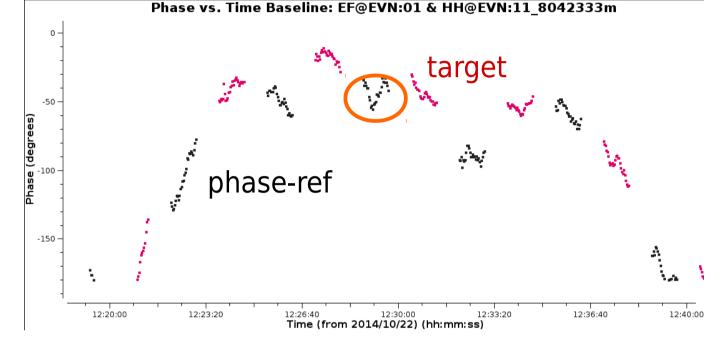
- Sky separation
 - Raw BP cal shows phase change dφ_{atm} is 2π per
 ~30 min, mainly atmospheric



- Phase-ref: target separation, say $d\theta = 1^\circ = 60$ arcmin
 - Convert $\boldsymbol{\theta}$ in degrees to 'R.A.-like' units of time
 - (dθ/360°) x cos(Dec.)x 24hr ~3.75 min at Dec. 20°
- In 3.75 min, $d\phi_{atm}$ gives $\pi/4 = 45^{\circ}$ phase change
 - Contributes $\theta_{beam}/4$ mas error to astrometric accuracy
 - But if random, only 45°/ \sqrt{M} \sim 10° to phase noise overall

Phase transfer accuracy

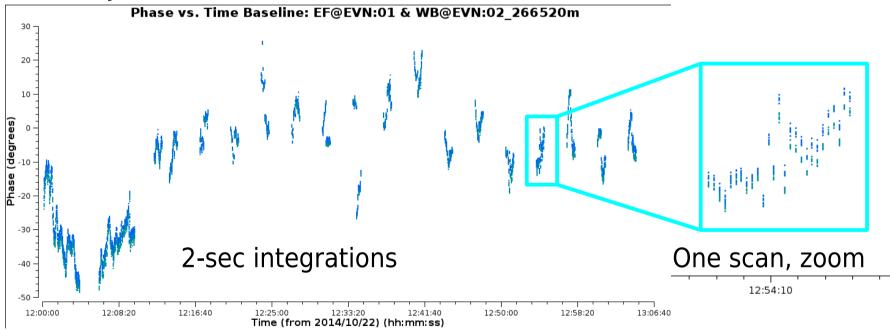
- Phase jitter
- ~20° deviations within phsref scans
- Combine in quadrature with d\u00f6_{atm} error 45°



- ~50° phase error ϕ_{ϵ}
- Target M=17 scans, $N \sim 10$ antennas for 3C345
 - $D_{all} \sim \sqrt{M} N/\phi_{\epsilon}$ gives dynamic range limit ~50
 - Might be less due to amp. errors etc. (I got 32 initially)

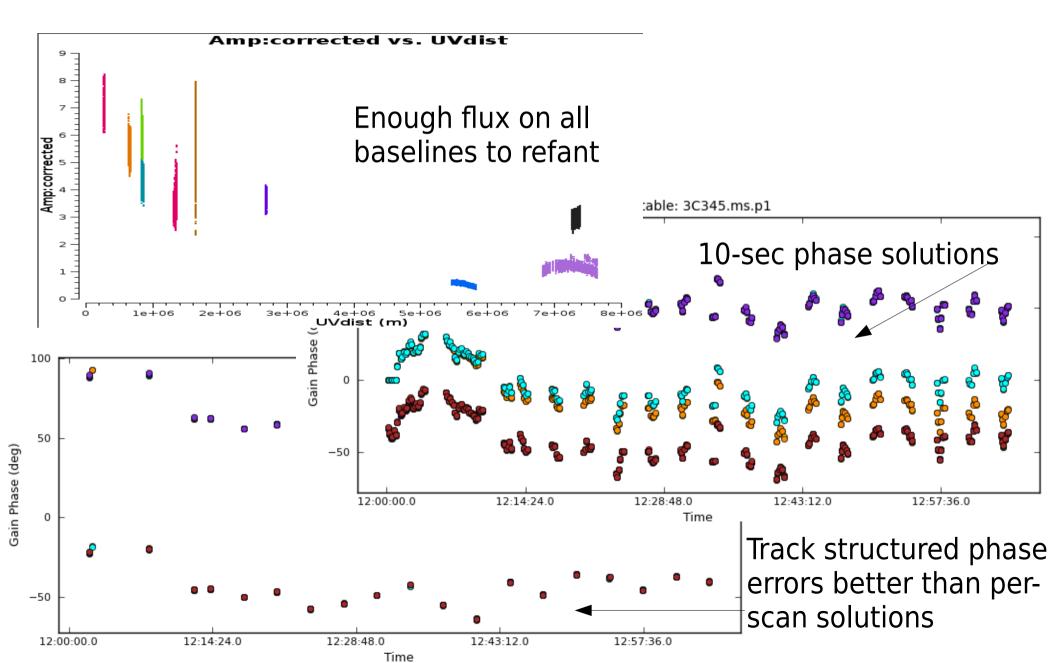
Self-cal timescales

- Target phase (after phs-ref corrections) changes rapidly
 - May be partly source structure, but seen even on short b'lines
 - Not just random noise even on 10-sec timescales

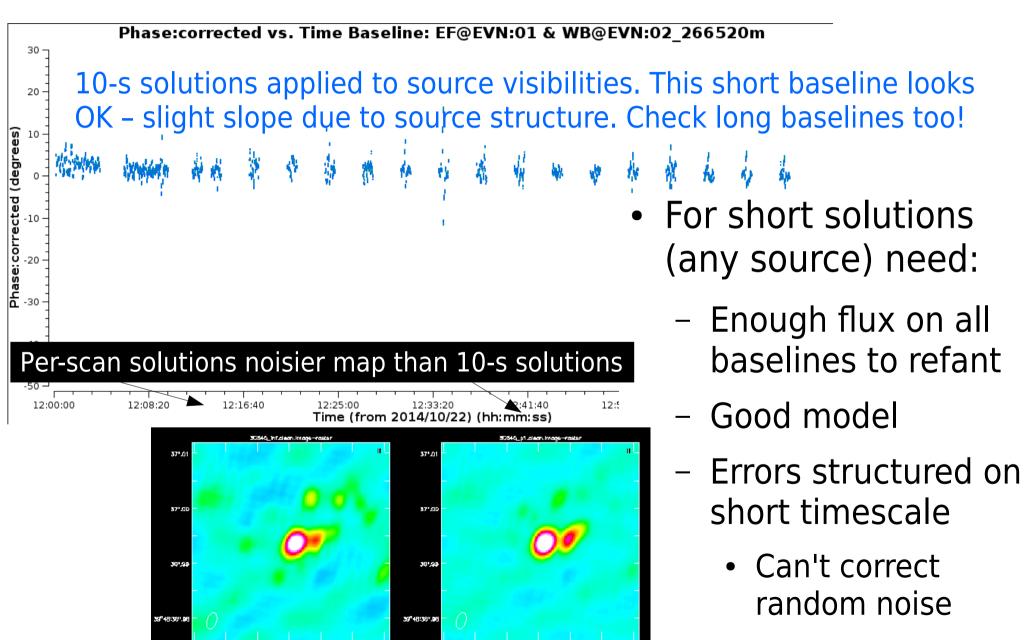


- Thermal noise 0.3 mJy in 10 sec
 - From previous expression, phsref must be >240 mJy on all baselines to give enough S/N for 10 sec solution interval

Calibration timescales



Short phase solutions OK?



Astrometric accuracy

- In the sort of observations used here, determined by:
 - Phase-ref position accuracy (check in catalogues)
 - May be shifted at different frequencies &/or resolved
 - Typically milliarcsec for VLBI calibrators
 - Antenna position accuracy (ask)
 - 1 cm error at λ 6cm is (1/6) θ_{beam} error
 - Phase transfer accuracy
 - see slide 22, $< \theta_{beam}$ error for good phase referencing
 - Position fitting (image analysis sessions)
 - Fit 2D Gaussian to compact source, error $\sim \theta_{beam} / (S/N)$
 - NB For target, fit to first image *before* self-calibration
- Add errors in quadrature

Pitfalls

- In CASA, calibration tables are *divided* into the data
 - e.g. apparent visibility amp. 1.5, phase $30^{\circ} = \pi/6$ rad
 - Model is amp. 0.5. phase 0°

– Correction is 3e $^{\pi/6}$

- so (1.5e $^{\pi/6}$ / 3e $^{\pi/6}$)=(1.5/3) $e^{(\pi/6-\pi/6)}$ =0.5 e^{0}

- In AIPS, the data are *multiplied* by the corrections
 - In this example, the correction would be $0.333e^{-\pi/6}$
- Beware small CASA amp corrections (large in AIPS)
 - Noise will be greatly increased, may be bad data
- If data look like noise, before you despair:
 - Check correct calibration applied, tweak parameters?
 - Make sure you are plotting RR,LL (or XX,YY) (cross-hands fainter)
 - Don't ever average || hands in uncalibrated data