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Tailoring calibration

● How do you know what parameters to set?

– What values?
● e.g. what solution interval for phase calibration?

● May depend on physical/instrument properties which 
are fixed for a given observation, for example:

– Tsys tables – replace -ives by interpolated values

● System temperature cannot be negative!

– Image pixel size: >3 pixels across synthesised beam 
● Use  = min()/max(baseline), explained in Imaging talk

– Easy to pipeline



Observation-dependent parameters

● Calibration strategy depends on

– Observing frequency, baselines, bandwidth etc.

– Weather and source elevation

– Calibration source properties
● Imaging depends on all these and on science goals

– Faint, extended source?

– Need very accurate astrometry?

– Very bright, self-calibratable source?

– Spectral lines?

– Sources all over the field of view?



Chosing reference antenna
● The antenna with the best chance of good solutions 

to all other antennas

– The one with the most short baselines? 
● Greater atmospheric differences on long baselines

– Most sensitive?

32 m

e-MERLIN antennas
5 are 25 m

● e-MERLIN: usually use 
Mk2 (or Pi or Da)

– Cm too far away
● EVN: Ef both most 

sensitive and central

● Refant phase fixed 0o

– All other phases relative



Delay calibration
● Delay corrections for linear phase gradients:

– Inspect phase v. frequency
– Only worth correcting delay if you can see it
– Usually stable for hours but averaging solint limited 

(~scan) by time-dependent phase stability 
 

Worth correcting delay

Random wiggles- use channel 
by channel bandpass calibr'n



Bandpass calibration
● Correct BP cal phase v. time first (see following slides)

– In Bandpass, average in time for as long as possible for best 
S/N per channel 

Zoom amp (y) axis

Amp v. time for two BP cal sources 
(target etc. observed

in between, not shown)
Amp v. frequency

● Both BP cals have same amp 
wiggles

– Could combine, interpolate or 
use just the one with best S/N 



Bandpass calibration
● Check BP data phase v. frequency also

Phases have same shape
- could combine data

Phases have different slopes
- need two sets of solutions

● Normalise bandpass 
solutions

– Flux scale may differ 
or be unset 

● In applycal, use 
interp='nearest' to 
allow extrapolation

● May need to select 
timeranges  



Visibility errors and noise

● Lowest possible noise is 'thermal' limit based on Tsys:

– Where
● So you can only improve on this by

– Bigger/more efficient antennas (Aef , A) or more (N)

– Lower noise Rx and/or Tsky (observing conditions) 

– Or, for given array, observe for longer/wider bandwidth
● But other factors often limit the noise....    

T sys=
1

ηA e
−τatm [T Rx+ηAT sky+(1−ηA)T amb ]

σ sys=
⟨T sys ⟩

ηA A eff √N (N−1)/2 Δν Δ t N pol



What accuracy is needed?

● What is the effect on imaging of visibility errors?

– How good does the calibration need to be?
● 'Received wisdom' provides properties and suggested 

solution intervals, etc. for a given array

– Good to know that there is a theoretical basis, though
● Massive data sets: much trial and error takes too long

● How bright is your target? 

– Is the peak bright enough to self-cal?

– How faint are the weakest 

features of interest?



What accuracy is needed?

● Faint target: need to reach thermal noise

● Bright target: may be dynamic range limited

– Need the best possible calibration and imaging

– If self-calibration is possible it just needs to be ‘good enough;
● Astrometry:

– Need high phase accuracy for position accuracy
● Special strategies

– Several phase reference sources
● Can use multiple elevations/frequencies to measure delay and antenna 

positions with high accuracy
● Photometry

– High phase and amplitude accuracy
● Multiple calibration sources 



Dynamic range limitation



Phase errors and dynamic range

● Simplified: flat, linear array, N antennas

– Single integration observation of a point source
● Direction such that we only need to consider u axis

– N(N-1)/2 visibilities

● Each baseline visibility is a  spike in the uv plane

– All but one are 'perfect' (unit amplitude, zero phase)
● These have V(u) = (u – uk) for the kth baseline 

– Phase error on baseline length u0 of  radians

● V(u) = (u – u0) e-i 



Phase errors and dynamic range

● Image is formed by Fourier transform

– I(x) = ∫ V(u) e i2ux du
● Each baseline contributes at position uk and complex 

conjugate -uk in the visibility plane

● Evaluating the term in the integral for each of the 
[N(N-1)/2]-1 good baselines gives 2cos(2ukx)

● Bad baseline gives 2cos(2u0x – )

– ~ 2[cos(2u0x) + sin(2u0x)] for small (in radians)

● The image integral thus sums to 

I (x)=2ϕϵ sin(2πu0 x)+2 ∑
k=1

N (N−1)/2

cos(2πuk x)



Phase errors and dynamic range

● The synthesised beam is given by

     = N(N-1) for u = 0

● Deconvolution is the subtraction of the beam from the 
image leaving the residual error

● an 'odd'  sinusoidal function of amplitude 2, period 1/u0

● To maintain the flux scale, integrals are normalised: 

          Here, 'true' amplitude A = 1

R(x)=[2ϕϵsin (2πu0 x)+2 ∑
k=1

N (N−1)/2

cos(2πuk x)]−2 ∑
k=1

N (N−1)/2

cos(2πuk x)

B (x)=2 ∑
k=1

N (N−1)/2

cos(2πuk x )

=2ϕϵ sin(2πu0 x)

R (x)
N (N−1)

=
A I (x)

N (N−1)
−

B (x)
N (N−1)



Calibration errors and dynamic range
● The rms of the residual                          

over the whole map is √2 /N(N-1)

R(x)=
2ϕϵ sin (2πu0 x)

N (N−1)

● For small phase error ,  large N, the ratio of the     
peak / noise residual is thus  

– Dynamic range DB() ~ I (x) / R (x)  ~ N2 /  √2 

● e.g., radians (5o)~0.09 
● Amplitude error  on a single baseline has the effect 

V(u) = (1+)(u – u0) e-i  leading (via a cos function) to

– Dynamic range DB() ~  N2 /  √2 
● A phase error of 5o is as bad as a 10% amp error
● Phase errors are sin (odd), amp are cos (even)



Calibration errors and dynamic range

● So far considered one-baseline error, one integration

● All baselines to one antenna affected by same error:

– (N-1) bad baselines (~N for large N)

– Dant =  DB /(N-1) = [N2/(N-1)] /√2   ~ N / √2

● If all baselines are affected by random noise, 

– Dall = DB / √ [N(N-1)/2] =  √ [N(N-1)/2]/   ~ N/

● These expressions are valid if errors are correlated in time, 
e.g. single phase-ref scan, not much change in u  (or v)

● For M periods (scans?) between which noise is uncorrelated

– Dynamic range is increased to Dall ~ √ M N/



Calibration for good dynamic range

● Implications so far: take a 10-antenna array

– Twelve independent scans on a target, phase reference 
and other calibration applied, well edited

● Residual phase scatter 20o : Dall ~ √ M N/
● ~ 100 dynamic range limit

– Can you improve by self-calibration?
● No if map noise has reached the Tsys limit and remaining errors 

are pure noise. If not:
● Maybe, if some antennas are still imperfectly calibrated

– Calibrate per antenna, per scan (or longer)
● Need potential S/N per interval high enough to get  <20o

– See self-cal talk



Phase-referencing dynamic range
● Most correctable errors affect all baselines to an antenna

– Sensitivity calculators generally give  per total b/w

● 8 spw, 2 polarizations, 1 min, 10-ant EVN array 0.15 mJy

– from www.evlbi.org/cgi-bin/EVNcalc.pl

● Sensitivity limit per antenna ant ~1.5mJy for 1 min 

– Use  Dant ~ N / √2, say want 5o phase accuracy 

– Sphsref /ant  = Dant  ~ N / √2
● Need phase-ref flux density Sphsref > 120 mJy

– In practice, need more to allow for bandpass etc. errors
● This is assuming solutions per 1-min scan

 σant(δ t ,δ ν) ≈ σarray √ N (N−1)/2
N−3 √Nspw Npol

Solve separately
for each spw, pol.

in radians



Time-dependent phase cal
● Apply bandpass/delay corrections 

● Phase reference source: 

– Need to interpolate solutions to target
● Does the phase-ref phase track the target phase?

● Consistent 
trend seen here
– Target wiggles 

may be 
structure

– Some 
deviations

target

phase-ref



Time-dependent phase cal
● Need to interpolate phase-ref solutions to target

– Ideally no more than 2 solutions per phase-ref scan
● Allows simple linear interpolation

– Must track phase properly
● Check enough S/N in e.g. half scan 

– Seeing low scatter by eye is OK! 

● Previous plot 
with 30-s 
averaging
– 30-s 

corrections 
will track 
phase better 
than per-scan



Time-dependent phase-cal
● Phase-ref very faint/fast-changing?

– Average spw/pol to improve S/N?
● Check bright cal source – can't 

average spw or pol. if phase offsets
– (can use BP cal to align if offsets 

are stable, if really necessary)
– Fit spline or 

polynomial

– Can be fitted 
over several 
scans

– 1st order term is 
known as 'rate'

coloured by spw



Time-dependent amp cal

● Apply phase solutions first to allow longer solint for 
amplitude calibration
– Avoid decorrelation

● If necessary, use shorter phase-only solint just for this
● Amp scatter per scan usually just noise
– Average 

whole 
scan

– Solutions 
will track 
changes 
OK

Averaged

Unaveraged



Phase transfer accuracy
● Sky separation

– Raw BP cal shows 
phase change 
datm is 2 per 
~30 min, mainly  
atmospheric 

● Phase-ref: target separation, say d = 1o = 60 arcmin

– Convert  in degrees to 'R.A.-like' units of time

● (d/360o) x cos(Dec.)x 24hr ~3.75 min at Dec. 20o

● In 3.75 min, datm gives /4 = 45o phase change

– Contributes beam/4 mas error to astrometric accuracy

● But if random, only 45o/ √M ~ 10o to phase noise overall



Phase transfer accuracy
● Phase jitter

● ~2020oo deviations 
within phsref 
scans

● Combine in 
quadrature with 
datm error 45o

target

phase-ref

– ~50o phase error 

● Target M=17 scans, N~10 antennas for 3C345

– Dall ~ √ M N/gives dynamic range limit ~50 

● Might be less due to amp. errors etc. (I got 32 initially)



Self-cal timescales
● Target phase (after phs-ref corrections) changes rapidly

– May be partly source structure, but seen even on short b'lines
●  Not just random noise even on 10-sec timescales

2-sec integrations One scan, zoom

– Thermal noise 0.3 mJy in 10 sec
● From previous expression, phsref must be >240 mJy on all 

baselines to give enough S/N for 10 sec solution interval



Calibration timescales

Enough flux on all
baselines to refant 

10-sec phase solutions

Track structured phase
errors better than per-
scan solutions



Short phase solutions OK?

● a

● For short solutions 
(any source) need:

– Enough flux on all 
baselines to refant

– Good model

– Errors structured on 
short timescale

● Can't correct 
random noise

10-s solutions applied to source visibilities. This short baseline looks 
OK – slight slope due to source structure. Check long baselines too!

Per-scan solutions noisier map than 10-s solutions



Astrometric accuracy

● In the sort of observations used here, determined by:

– Phase-ref position accuracy (check in catalogues)
● May be shifted at different frequencies &/or resolved 

– Typically milliarcsec for VLBI calibrators
– Antenna position accuracy (ask)

● 1 cm error at  6cm is (1/6)beam error

– Phase transfer accuracy 
● see slide 22, <beam error for good phase referencing

– Position fitting (image analysis sessions)
● Fit 2D Gaussian to compact source, error ~beam /(S/N)

– NB For target, fit to first image before self-calibration
● Add errors in quadrature 



Pitfalls
● In CASA, calibration tables are divided into the data

– e.g. apparent visibility amp. 1.5, phase 30o = /6 rad
● Model is amp. 0.5. phase 0o

– Correction is 3e /6   

– so ( 1.5e /6  / 3e /6  )=(1.5/3)  e(/6-/6) =0.5  e0     
● In AIPS, the data are multiplied by the corrections

– In this example, the correction would be  0.333e -/6

● Beware small CASA amp corrections (large in AIPS)

– Noise will be greatly increased, may be bad data
● If data look like noise, before you despair:

– Check correct calibration applied, tweak parameters?

– Make sure you are plotting RR,LL (or XX,YY) (cross-hands fainter)
● Don't ever average || hands in uncalibrated data


