Data Inspection, Editing, Flagging

AND RADIO FREQUENCY INTERFERENCE (RFI)

Credit: J. Radcliffe Partially based on A. Offringa's 2015 ERIS talk

Credit: M Gaylard / HartRAO

Why do we need to edit data??

Radio sources are extremely weak!

Remember $1Jy = 10^{-26}$ Watts per sq. metre per Hz !

- Brightest sources are ~few 10s Jansky
- Mobile phones at 1km away are 10⁸ brighter...
- Protected radio bands are exceeded by our bandwidths!
- Satellites love to operate at useful radio frequencies.

This is known as Radio Frequency Interference (RFI) and we need to remove it

Jansky (Jy)	Source
110,000,000	Radio-frequency interference from a GSM phone transmitting 0.5 W at 1800 MHz at a distance of 1 km (RSSI of -70 dBm) ^[8]
20,000,000	Disturbed Sun at 20 MHz (Karl Guthe Jansky's initial discovery, published in 1933)
4,000,000	Sun at 10 GHz
1,000,000	Milky Way at 20 MHz
10,000	1 Solar flux unit
2,000	Milky Way at 10 GHz
1,000	Quiet Sun at 20 MHz

But that's not all!

- Broken elements (antennas/stations)
- Correlator malfunctions
- Shadowing
- Initial pointing delay
- Bandpass issues
- Low elevation
- Correlated noise on some baselines (e.g. LOFAR split stations)

Your source is literally a needle in a haystack!

Data **cannot** be (self-)calibrated when any of these issues are still in the data.

This talk:

- Radio Frequency Interference (RFI)
- Data inspection
- Manual data flagging (how to remove sources of bad data)
- Automatic RFI flagging algorithms
- Data averaging
- Sources of imaging errors

- Radio Frequency Interference (RFI) is a F major problem for nearly all radio telescopes.
- Advantage: target source is often much much lower in flux than the RFI source
- Can be generated internally or externally.
- Lots of interference at low frequencies (<1.5 GHz, e.g. LOFAR, GMRT, WSRT, EVLA, MWA, ...)
- Less of an issue for higher frequencies (ALMA); or VLBI but mitigation still required in most cases.

Table 10. Idell		
Frequency (MHz)	Source	Comments
1025-1150	Aircraft navigation	Very strong
1200.0	VLA modem	
1217-1237	GPS L2	Very strong
1243-1251	GLONASS L2	
1254	Aeronautical radar	
1263	Aeronautical radar	
1268	COMPASS E6	
1310	Aeronautical radar	
1317	Aeronautical radar	
1330	Aeronautical radar	
1337	Aeronautical radar	
1376-1386	GPS L3	Intermittent
1525-1564	INMARSAT satellites	
1564-1584	GPS L1	Very strong
1598-1609	GLONASS L1	
1618-1627	IRIDIUM satellites	
1642	2nd harmonic VLA radios	Sporadic
1683-1687	GOES weather satellite	
1689-1693	GOES weather satellite	
1700-1702	NOAA weather satellite	
1705-1709	NOAA weather satellite	
1930-1990	PCS cell phone base stations	
2178-2195	Satellite Downlink	very strong*
2320-2350	Sirius/XM Satellite radio	very strong*
3700-4200	Satellite Downlinks	very strong*

DET Detruces 4

This is what a satellite (IRIDIUM) looks like in data:

- Many arrays apply flag masks to data **automatically** to remove known RFI affected channels
- Does not catch time varying RFI, therefore manual identification is almost always required (or with RFI detecting algorithm)!

- Many arrays apply flag masks to data **automatically** to remove known RFI affected channels
- Does not catch time varying RFI, therefore manual identification is almost always required (or with RFI detecting algorithm)!

Data Inspection

There are many tasks in CASA which help you inspect & search for bad data:

plotms --- create X-Y plots of data in MS and calibration tables, flag data

plotxy --- older X-Y plotter with some functionalities not yet implemented in plotms

browsetable --- browse data in any CASA table (including a MS)

plotants --- create simple plots of antenna positions (useful only to check shadowing)

casaviewer --- can provide detailed view of the measurement set (fiddly!)

Data Inspection: plotms

plotms - is a very useful tool to identify bad data, gui interface is easy to use!

Data Inspection: plotms

Can flag interactively in plotms by using the region + flag buttons

Data Inspection: plotms

- Most of the high amplitude RFI is gone however this is not the most efficient way to flag.
- There is more than just very high flux RFI to remove and can be time

Data Inspection

See a repeating pattern of low fluxes at the start of each scan? We could do this interactively (it could take a while) or we could script it and use

Data Flagging

flagdata is a task used to flag bad channels, scans, antennas etc etc. in a scriptable way! Has many modes to efficiently flag bad data.

flagdata :: All-purpose flagging task based on data-selections and flagging modes/algorithms.

VIS		=		#	Name of MS file or calibration table
mode		=	'manual'	#	Elanging mode
moue	field	=	I I	#	Field names or field index numbers:
				#	'' ==> all. field='0~2.3C286'
	SDW	=		#	<pre>Spectral-window/frequency/channel; ''</pre>
				#	==> all. spw='0:17~19'
	antenna	=	1.1	#	Antenna/baselines: '' ==> all,
				#	antenna ='3,VA04'
	timerange	=	1.1	#	Time range: '' ==>
				#	all,timerange='09:14:0~09:54:0'
	correlation	=	1.1	#	Correlation: '' ==> all,
				#	correlation='XX,YY'
	scan	=		#	<pre>Scan numbers: '' ==> all</pre>
	intent	=		#	Scan intent: '' ==> all,
				#	<pre>intent='CAL*POINT*'</pre>
	array	=	1.1	#	(Sub)array numbers: '' ==> all
	uvrange	=	1.1	#	UV range: '' ==> all; uvrange
				#	='0~100klambda', default
				#	units=meters
	observation	=		#	Observation ID: '' ==> all
	feed	=		#	Multi-feed numbers: Not yet
				#	implemented
	autocorr	=	False	#	Flag only the auto-correlations
acti	on	=	'apply'	#	Action to perform in MS and/or in
				#	<pre>inpfile (none/apply/calculate)</pre>
	display	=	1.1	#	Display data and/or end-of-MS reports
				#	at runtime (data/report/both).
	flagbackup	=	True	#	Back up the state of flags before the
				#	run
save	pars	=	False	#	Save the current parameters to the
				#	FLAG_CMD table or to a file

Data Flagging

Two most important parameters here are mode and action:

Mode determines what sort of flagging needs to be performed (explained later):

Action has two options 'apply' & 'calculate':

- If you use apply, the flags will be applied to the MS.
 - Setting display = 'data' launches an interactive GUI (v. helpful) and the data flags can be inspected and if unsatisfactory one can exit without applying the flags
 - display = 'report' prints flagging statistics (can also set display='both' and it doesn both GUI + statistics
- Use 'calculate' and the flags are calculated but not written to the MS.
 Useful if display = 'data' so flags can be inspected without straight application

Nb: set flagbackup=True so that the flags are saved to .flagversions file before applying!

action	=	'apply'	#	Action to perform in MS and/or in inpfile
			#	(none/apply/calculate)
display	=	,,	#	Display data and/or end-of-MS reports at runtime
			#	(data/report/both).
flagbackup	=	True	#	Back up the state of flags before the run

Data Flagging

Returning to this data we can find where the bad data is contained and manually flag it using **flagdata**. This way we ensure that if something should happen to the data we can recover the flags!

Remember this effect. This requires a mode in flagdata called 'quacking'.

The low fluxes at the start (and end) are caused by data being recorded when the telescope is being moved between sources.

- Use plotms to approximate the time off source. e.g. here it is 40s
- Note that slewing times will be different for non-heterogenous arrays!

To flag these scans, these inputs are required!

mode		=	'quack'
	field	=	'0'
	spw	=	
Pickmere baselines only	antenna	=	'Pi&*'
(e-MEKLIN 1S heterogeneous)	timerange	=	
neter ogeneous)	correlation	=	
	scan	=	
	intent	=	
	array	=	
	uvrange	=	
	observation	=	
	feed	=	
40s as found in plotms	quackinterval	=	40
Low flux only found	quackmode	=	'beg'
at start of scan			
Occurs on all scans!	quackincrement	_	True

```
# Flagging mode
# Field names or field index numbers:
# '' ==> all, field='0~2,3C286'
# Spectral-window/frequency/channel: ''
# ==> all, spw='0:17~19'
# Antenna/baselines: '' ==> all,
# antenna ='3,VA04'
# Time range: '' ==>
   all,timerange='09:14:0~09:54:0'
#
# Correlation: '' ==> all,
# correlation='XX,YY'
# Scan numbers: '' ==> all
# Scan intent: '' ==> all,
# intent='CAL*POINT*'
# (Sub)array numbers: '' ==> all
# UV range: '' ==> all; uvrange
   ='0~100klambda', default
#
# units=meters
  Observation ID: '' ==> all
# Multi-feed numbers: Not yet
  implemented
#
# Quack n seconds from scan beginning
   or end
#
# Quack mode. beg: first n seconds of
   scan; endb: last n seconds of scan;
#
#
   end: all but first n seconds of
#
   scan; tail: all but last n seconds
   of scan.
#
  Flag incrementally in time?
#
```

- Broken elements → remove antennas (flagdata mode = manual)
- Correlator malfunctions → remove timesteps (manual)
- Shadowing → remove antennas in time range (shadow)
- Initial pointing delay → remove first timesteps (quack)
- Bandpass issues → remove channels (manual) Low elevation → remove antennas with low elevation (elevation)
- Correlated noise on some baselines (e.g. LOFAR split stations) → Flag baselines (manual)
- Interference → remove antennas, timestep, frequencies or baselines... (manual,clip)

If all this is done, then calibrating the data is a whole lot easier!

Automated Data Flagging

We are really good at picking up patterns which allows easy identification of RFI, however computers are not!

Common manual excision methods:

- Manual selection by data reducing astronomer
- Thresholding / specialized project pipelines (e.g. Baan et al. 2004, Winkel et al. 2007)
- Manual selection is not practical for modern observatories:
 - Enormous data volumes, computationally fast algorithms required.
 - Needs to be more accurate than thresholding

We need fast automated RFI excision routines!

Automated Data Flagging

Two classes of RFI excision methods:

- Detection: find & throw away affected data
- Filtering or subtracting: estimate RFI contribution and restore affected data

Detection methods ("flagging") commonly used

• Some specialized pipelines for surveys or instruments

Filtering RFI is harder

- Resulting data quality is not well understood
- Requires more resources
- Lack of full (automated) filtering pipelines

How AOFlagger works:

How AOFlagger works:

Initial sum threshold

- Change time & frequency resolution then remove components using high pass filter
- Iterate, changing resolution each time

Finish iterating & do final sum threshold

What could go wrong?

- Some astronomical sources vary quickly in time (sun, pulsars, ...)
- Quick fringes are line-like patterns
- Spectral line observations

Mostly not an issue - sources are mostly much weaker than RFI, and invisible in single correlations.

Data Averaging

HEALTH WARNING: Always flag (first) at highest possible resolution!

Highest resolution: Averaged without RFI detection:

- Flagging is incremental: don't reset flags!
- Correlator might have set flags. These will be lost. To undo flagging, use backup (column).

Data Averaging

- Data size can be reduced by averaging data in time and/or frequency direction
- Only average after RFI detection
- Over-averaging causes smearing
 - Time-smearing: in tangential direction
 - Frequency-smearing: in radial direction
- Calibration might also constrain averaging factor

BANDWIDTH SMEARING

(from Basic Imaging Lecture)

NVSS image

Effect is radial smearing, corresponding to radial extent of measurements in uv plane

TIME SMEARING

(from Basic Imaging Lecture)

- Time-average smearing (decorrelation) produces tangential smearing
- Not easily parameterized. At declination +90° a simple case exists where percentage time smearing is given by:

• At other declinations, the effects are more complicated.

Data Averaging in CASA

If smearing calculated to be at acceptable levels (see Basic Imaging), use CASA task split to average the data.

Example input:

```
inp split
vis='3C196_spw5_sub1.MS' (input)
outputvis='averaged.MS'
width=8 (Average over 8 channels)
timebin='60s' (Average over 60 s)
go
```

Data Averaging in CASA

Original resolution:

After averaging

- Processing data can be very time expensive, but almost all steps scale linear with number of visibilities.
- Work on averaged data (and/or subset) while experimenting with settings

- First step in data processing is data inspection
- Second step is BACKUP YOUR DATA
- Third step is data flagging and RFI detection
- Calibration, imaging, ... to be discussed!