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Topics discussed:

• Recap of CLEAN 

• When to use multi-scale or other deconvolution methods

• The effect of and solution to w-terms 

• Multi-term deconvolution

• Self-calibration using CLEAN components 

• Primary beam correction 

• Mosaicking

• Direction-dependent effects during imaging 

INTRODUCTION



After calibration the visibilities are represented by (+ errors):

V (u, v, w) =

ZZ
I(l,m)p

1� l2 �m2
e�2⇡i(ul+vm+w(

p
1�l2�m2�1))dldm

(u, v, w)

(l,m)

I(l,m)

interferometer’s geometrical vector

sky posi<on

sky brightness (our ‘image’)

Want to calculate              from I(l,m) V (u, v, w)
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Nb: 𝑙, 𝑚, 𝑛 notation is essentially the same as 𝑥, 𝑦, 𝑧 coordinates used in the prev. talks

INTRODUCTION



INTRODUCTION

V (u, v, w) =

ZZ
I(l,m)p

1� l2 �m2
e�2⇡i(ul+vm+w(

p
1�l2�m2�1))dldm

If we have a small field of view (l~0, m~0) then w→0:

V (u, v) ⇡
ZZ

I(l,m)e�2⇡i(ul+vm)dldm

The rela0onship between                and              is? V (u, v) I(l,m)
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OUR EXAMPLE
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THE ‘DIRTY’ IMAGE
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Example VLA-A data targeting M82



DECONVOLUTION

The Högbom algorithm (1974)

1. Find the strength and posi1on of the brightest peak.

2. Subtract the dirty beam x peak strength x loop gain/damping factor  posi1on of 
the peak, the dirty beam B mul1plied by the peak strength and a damping factor 
(usually termed the loop gain).

3. Go to 1. unless any remaining peak is below some user-specified level or number 
of itera1ons reached.

4. Convolve the accumulated point source model with an idealized `CLEAN' beam 
(usually an ellip1cal Gaussian fiQed to the central lobe of the dirty beam).

5. Add the residuals of the dirty image to the `CLEAN' image.
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HÖGBOM CLEAN IN ACTION
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Hogbom CLEANED image



CLEAN IMAGE & MODEL
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Hogbom CLEANED model



THE MANY FORMS OF CLEAN

Maximum Entropy Method Clark 

Clark-Stokes
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DECONVOLVING DIFFUSE STRUCTURE
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• Improved algorithm by Cornwell (2008) : “mul1-scale clean” 

• Fits small smooth Gaussian kernels (and delta func1ons) during a Högbom CLEAN 
itera1on

• Implemented in CASA tclean. Advised to use pixel scales corresponding to orders 
of the dirty beam size and avoid making scale too large compared to the image 
width/lowest spa1al frequency.

• E.g. For example, if the synthesized beam is 10" FWHM and cell=2", try 
mul1scale = [0,5,15]

CASA tclean
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MULTI-SCALE CLEAN

Multi-scale CLEANED image
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MULTI-SCALE CLEAN

Multi-scale CLEANED model



WIDE-FIELD IMAGING

2D Fourier Transform does not hold for new sensiHve, wide-band, 
wide-field arrays

Non co-planar baselines becomes a problem i.e. l,m,w >> 0

V (u, v, w) =

ZZ
I(l,m)p

1� l2 �m2
e�2⇡i(ul+vm+w(

p
1�l2�m2�1))dldm
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Three-dimensional visibility fuction 𝑉 𝑢, 𝑣, 𝑤 can be transformed to 
a three-dimensional image volume 𝐼 𝑙,𝑚, 𝑛 - this is not physical 
space since 𝑙, 𝑚, & 𝑛 are direction cosines. 

The only non-zero values of I lie on the surface of a sphere of unit 
radius defined by n = 1 − 𝑙! −𝑚!



15

So how do we achieve this? Two solutions available:

i. Faceting - split the field into multiple images and stitch them together

ii. w-projection - most used solution, effectively performs the above to recover 
𝐼 𝑙, 𝑚

Both available in CASA!

WIDE-FIELD IMAGING

The sky brightness consisting of a number 
of discrete sources       are transformed 
onto the surface of this sphere. 

The two-dimensional image       is recovered 
by projection onto the tangent plane at the 
pointing centre

lm

n
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i .  FACETING

• Takes advantage of the small field approximation (l,m~0) so the image sphere is 
approximated by pieces of many smaller tangent planes. 

• Within each sub-field, standard two-dimensional FFTs may be used.

• Errors increase quadratically away from the centre of each sub-field, but these 
are acceptable if enough sub-fields are selected. 

lm

n

• Facets can be selected so as to cover known 
sources. 

• Facets may overlap allowing complete 
coverage of the primary beam 

CASA clean implementation



i i .  w-PROJECTION
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V (u, v, w) ⇤ F(e�2⇡iw(
p
1�l2�m2�1)) =

ZZ
I(l,m)p

1� l2 �m2
e�2⇡i(ul+vm)dldm

• Very dependent on zenith angle, co-planarity of array, field of 
view and resolution.

• Convolution theorem no longer works when w-terms present.

• CLEAN assumes constant PSF, but PSF changes (slightly) over the 
image.

• Solved with Cotton-Schwab algorithm (Schwab 1984) (used in 
CASA automatically).

Cornwell et al. 2008

= 0
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The Cotton-Schwab + w-projection algorithm: 

1) Make initial dirty image & central PSF - Perform minor iterations:

• Find peak
• Subtract scaled PSF at peak with small gain
• Repeat until highest peak ~80-90% decreased 

2) Major iteration: ‘Correct’ residual

• Predict visibility for current model 
• Subtract predicted contribution and re-image 

i i .  w-PROJECTION

CASA clean
implementation



19

w-PROJECTION

Take the GOODS-N field as observed by 1.4 GHz e-MERLIN

PoinHng centre

Source 1
Source 2



w-PROJECTION

Source 1: Near the pointing centre

No w-projection w-projection

PreWy much idenHcal! Small field approximaHon holds and 2D FT suffices



Source 2: Away from the poinHng centre

No w-projection w-projection

Small field approximation breaks and you need w-projection!

w-PROJECTION
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MULTI-FREQUENCY SYNTHESIS

• Mul<-frequency synthesis (MFS) means gridding different 
frequencies on the same uv grid 

Conway & Sault (1995)



MULTI-FREQUENCY DECONVOLUTION

• Similar but not the same! (same name often used). Also known as 
multi-term multi-frequency synthesis (MTMFS) imaging.

Takes spectral variation of sky brightness distribution into account during 
deconvolution using linear Taylor series approximation.

Flux
Density

Frequency

Assumed flat spectrum

Actual source spectrum
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MULTI-FREQUENCY DECONVOLUTION

𝐼"# represents the sky emission in terms of a Taylor series about a 
reference frequency: 

Im⌫ =
Nt�1X

t=0

bt⌫I
sky
t where bt⌫ =

✓
⌫ � ⌫0
⌫0

◆t

A power model is used to describe the spectral dependence of the sky. 
One practical choice is a power law with emission. 

Isky⌫ = Isky⌫0

✓
⌫

⌫0

◆Isky
↵ +Isky

� log
⇣

⌫
⌫0

⌘

• Useful for wideband, high dynamic range and sensitive imaging. 
• Incorporated in CASA in combination with multi-scale CLEAN as 

‘mtmfs’



SELF-CALIBRATION USING CLEAN
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Self-calibraHon recap:

V obs
ij

Image,
de-convolve,
create model

V mod
ij

Given:  

Use model to calibrate gain Jones 
matrix (phase and/or amp)

Replace V obs
ij with

And.. repeat until model/solution converges!

V obs
ij = GijV

real
ij

<latexit sha1_base64="aYhxtnoyQOkv731JQZ9rV+mqenc="></latexit>

V obs
ij /Gij

<latexit sha1_base64="f6PqO63W8TrLKxKlRH8LTBjogCo=">AAAC13icfVFNbxMxEHW2fJTloykcEZJFhIQ4hN2CBMeKHuBYJJIWZUM0651N3Kztle0FIsvqoRLiyl/gxhV+Df8Gb5oDSSkjWXp6M0/zPC+vK25skvzuRFtXrl67vn0jvnnr9p2d7u7doVGNZjhgqlL6OAeDFZc4sNxWeFxrBJFXeJTPD9r+0UfUhiv5zi5qHAuYSl5yBjZQk+6D4cRxeuI/uEyAnWnhVG68f/o60Cd+0u0l/WRZ9CJIV6BHVnU42e18zwrFGoHSsgqMGaVJbccOtOWsQh9njcEa2BymOApQgkAzdst/ePooMAUtlQ5PWrpk/1Y4EMYsRB4mW7Nms9eS/+qNGlu+HDsu68aiZOeLyqaiVtH2KLTgGpmtFgEA0zx4pWwGGpgNp1vbkis1txBOtMZONdQzzj77OM4kfmJKCJDFk6wspi5DaRqNrSmXqTYLtC5jXDPv+t77DQVoJi7R1JoLvExk/idak8Yh1XQzw4tguNdPn/X33j7v7b9a5btN7pOH5DFJyQuyT96QQzIgjJyRH+Qn+RW9j06jL9HX89Gos9LcI2sVffsDT57sLw==</latexit>

Gij
<latexit sha1_base64="TR24uYRJUfranI7qZzEmaQfzlzU=">AAACvnicfZHLbtNAFIYn5lbMrYUlG4sICbGI7BapXUawKMsikbRSHEXHx8fJNHOxZsbQaOR3YFuWvBVvwzjNgqSUI4306z/z6dyKWnDr0vR3L7p3/8HDR3uP4ydPnz1/sX/wcmx1Y5BGqIU2FwVYElzRyHEn6KI2BLIQdF4sP3X5829kLNfqq1vVNJUwV7ziCC5Y49OZ55ftbL+fDtJ1JLdFthF9tomz2UHvV15qbCQphwKsnWRp7aYejOMoqI3zxlINuIQ5TYJUIMlO/brdNnkbnDKptAlPuWTt/k14kNauZBF+SnALu5vrzH/lJo2rTqaeq7pxpPCmUNWIxOmkmz0puSF0YhUEoOGh1wQXYABd2NBWlULrpYPCbk3i5wbqBcerNo5zRd9RSwmqfJ9X5dznpGxjqGvK57pbOTmfIzfY+kHbtjsEGJR3MLXhku6C7P+gLTQOV812b3hbjA8H2dHg8MuH/vDj5r577DV7w96xjB2zIfvMztiIIbtkP9g1+xkNoyqSkb75GvU2zCu2FdHVHxle4dI=</latexit>
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SELF-CALIBRATION USING CLEAN

• Clean components can be used as calibra<on model
• Oaen applied as:  

Phase calibration

Shallow CLEAN

Phase calibration

Deep CLEAN

Amplitude & phase calibration

Deep CLEAN

(avoid CLEAN bias)
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SELF-CALIBRATION USING CLEAN

Self-calibration 
improvements on 
C-band e-MERLIN 
observations of 
3C277.1 



PRIMARY BEAM CORRECTION
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• Correc<on is required for the antenna response

• This is called “primary beam” correc<on (as opposed to the 
synthesized beam / psf ) 

• For dishes, the primary beam is ~constant but can be very 
complex away from the FWHM.

To correct for: mul-ply final image with the inverse beam!

Scalar for total brightness, matrix for polarised
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PRIMARY BEAM CORRECTION

Complex sidelobe structure + asymmetries!

Knockin primary beam holographic scan
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PRIMARY BEAM CORRECTION

Primary beam 
corrected 
JVLA+MERLIN 
image of GOODS-N

Note the increased 
noise level towards 
the edge of the 
field



VARIABLE PRIMARY BEAMS

• Primary beam of arrays can vary with time and frequency! 

• Has to be accounted for during cleaning and primary beam 
correction if imaging the whole primary beam (CASA has this 
for the JVLA + ALMA.  VLBI arrays don’t image the pb often!) 
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VARIABLE PRIMARY BEAM

Primary beam spectral variation for the UK Lovell Telescope 1.4-1.6GHz 

Image credit: Nick Wrigley
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MOSAICKING

What if this is our primary beam and we want to see the FR-I galaxy too?
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MOSAICKING

We can use multiple pointings and combine them with correct weighting
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MOSAICKING

• To create the mosaicked image

• Need to weight with 1/𝜎( = (primary beam)2 or 

M(l,m)

M(l,m) =

P
i B

2
i (l,m)(Ii(l,m)/Bi(l,m))P

i B
2
i (l,m)

=

P
i Bi(l,m)Ii(l,m)P

i B
2
i (l,m)

B2
i (l,m)
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MOSAICKING

Some telescopes like ASKAP are equipped with Phased Array Feeds
that enable simultaneous multi-beam imaging of a field
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DIRECTION DEPENDENT CALIBRATION

• Direction dependent (DD) effects may need further corrections 
applied during imaging… not a fully solved problem!

• Can be ionosphere, tropospheric, instrumental (e.g. a -
projection)

• Affects position, brightness & polarisation angles! 
Before DD cal A]er DD cal

Ya_awata SAGECal (2007)



38

DIRECTION DEPENDENT CALIBRATION

Possible solutions:
• Image in small ‘facets’ where DD's effects are constant
• Peeling 
• Direction-dependent calibration during visibility gridding (LOFAR 

does this)
• For VLBI, multi-source self-calibration (below)

Pre-MSSC Post-MSSC

Radcliffe et al. 2016
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Topics discussed:

• CLEAN 

• When to use MulH-scale or other deconvoluHon methods

• The effect of and soluHon to w-terms 

• MulH-term deconvoluHon

• Self-calibraHon using CLEAN components 

• Primary beam correcHon 

• Mosaicking

• DirecHon-dependent effects during imaging 

SUMMARY 


