ADVANCED RADIO INTERFEROMETRIC IMAGING

Lecturer: James Allison (University of Oxford)

Credits: J. Radcliffe, N. Jackson (ERIS2015), A. Offringa (ERIS 2015), T. Muxlow (ERIS 2013)

Topics discussed:

- Recap of CLEAN
- When to use multi-scale or other deconvolution methods
- The effect of and solution to w-terms
- Multi-term deconvolution
- Self-calibration using CLEAN components
- Primary beam correction
- Mosaicking
- Direction-dependent effects during imaging

INTRODUCTION

After calibration the visibilities are represented by (+ errors):

$$\begin{split} V(u,v,w) &= \iint \frac{I(l,m)}{\sqrt{1-l^2-m^2}} e^{-2\pi i (ul+vm+w(\sqrt{1-l^2-m^2}-1))} dl dm \\ & \left(u,v,w\right) \text{ interferometer's geometrical vector} \\ & \left(l,m\right) \quad \text{sky position} \\ & I(l,m) \quad \text{sky brightness (our 'image')} \\ & \textbf{Want to calculate } I(l,m) \text{ from } V(u,v,w) \end{split}$$

Nb: (l, m, n) notation is essentially the same as (x, y, z) coordinates used in the prev. talks

INTRODUCTION

$$V(u,v,w) = \iint \frac{I(l,m)}{\sqrt{1-l^2-m^2}} e^{-2\pi i(ul+vm+w(\sqrt{1-l^2-m^2}-1))} dldm$$

If we have a small field of view (l^0 , m^0) then $w \rightarrow 0$:

$$V(u,v) \approx \iint I(l,m)e^{-2\pi i(ul+vm)}dldm$$

The relationship between V(u, v) and I(l, m) is?

OUR EXAMPLE

THE 'DIRTY' IMAGE

Example VLA-A data targeting M82

M82_dirty

The Högbom algorithm (1974)

- 1. Find the strength and position of the brightest peak.
- 2. Subtract the dirty beam x peak strength x loop gain/damping factor position of the peak, the dirty beam B multiplied by the peak strength and a damping factor (usually termed the loop gain).
- 3. Go to 1. unless any remaining peak is below some user-specified level or number of iterations reached.
- 4. Convolve the accumulated point source model with an idealized `CLEAN' beam (usually an elliptical Gaussian fitted to the central lobe of the dirty beam).
- 5. Add the residuals of the dirty image to the `CLEAN' image.

HÖGBOM CLEAN IN ACTION

Hogbom CLEANED image

CLEAN IMAGE & MODEL

Hogbom CLEANED model

THE MANY FORMS OF CLEAN

Maximum Entropy Method

Clark

Clark-Stokes

DECONVOLVING DIFFUSE STRUCTURE

- Improved algorithm by Cornwell (2008) : "multi-scale clean"
- Fits small smooth Gaussian kernels (and delta functions) during a Högborn CLEAN iteration
- Implemented in CASA tclean. Advised to use pixel scales corresponding to orders of the dirty beam size and avoid making scale too large compared to the image width/lowest spatial frequency.
- E.g. For example, if the synthesized beam is 10" FWHM and cell=2", try multiscale = [0,5,15]

deconvolver scales	=	'mu] [0,	lti: 1,	5,	le' 15]	# # #	<pre># Minor cycle algorithm (hogbom,clark,m # ultiscale,mtmfs,mem,clarkstokes) # List of scale sizes (in pixels) for # multi-scale algorithms</pre>	CASA tclean
smallscalebias restoringbeam	=			0. [6]	# # #	A bias towards smaller scale sizes Restoring beam shape to use. Default is the PSF main lobe	

MULTI-SCALE CLEAN

Multi-scale CLEANED image

MULTI-SCALE CLEAN

Multi-scale CLEANED model

2D Fourier Transform does not hold for new sensitive, wide-band, wide-field arrays

Non co-planar baselines becomes a problem i.e. l,m,w >> 0

$$V(u, v, w) = \iint \frac{I(l, m)}{\sqrt{1 - l^2 - m^2}} e^{-2\pi i (ul + vm + w(\sqrt{1 - l^2 - m^2} - 1))} dl dm$$

Three-dimensional visibility fuction V(u, v, w) can be transformed to a three-dimensional image volume I(l, m, n) - this is not physical space since l, m, & n are direction cosines.

The only non-zero values of I lie on the surface of a sphere of unit radius defined by n = $\sqrt{1 - l^2 - m^2}$

WIDE-FIELD IMAGING

The sky brightness consisting of a number of discrete sources \bigstar are transformed onto the surface of this sphere.

The two-dimensional image \swarrow is recovered by projection onto the tangent plane at the pointing centre

So how do we achieve this? Two solutions available:

- i. Faceting split the field into multiple images and stitch them together
- ii. w-projection most used solution, effectively performs the above to recover I(l,m)

Both available in CASA!

i. FACETING

- Takes advantage of the small field approximation (I,m~0) so the image sphere is approximated by pieces of many smaller tangent planes.
- Within each sub-field, standard two-dimensional FFTs may be used.
- Errors increase quadratically away from the centre of each sub-field, but these are acceptable if enough sub-fields are selected.
- Facets can be selected so as to cover known sources.
- Facets may overlap allowing complete coverage of the primary beam

CASA clean implementation

grid	dmode wprojplanes	= 'widefield' planes = 1		<pre># Gridding kernel for FFT-based # transforms, default='' None # Number of w-projection planes # convolution; -1 => automatic # determination</pre>	
	facets	=	8	<pre># Number of facets along each axis # (main image only)</pre>	

ii. w-PROJECTION

$$V(u, v, w) = 0 * \mathfrak{F}(e^{-2\pi i w(\sqrt{1-l^2-m^2}-1)}) = \iint \frac{I(l, m)}{\sqrt{1-l^2-m^2}} e^{-2\pi i (ul+vm)} dl dm$$

- Very dependent on zenith angle, co-planarity of array, field of view and resolution.
- Convolution theorem no longer works when w-terms present.
- CLEAN assumes constant PSF, but PSF changes (slightly) over the image.
- Solved with Cotton-Schwab algorithm (Schwab 1984) (used in CASA automatically).

ii. w-PROJECTION

The Cotton-Schwab + w-projection algorithm:

1) Make initial dirty image & central PSF - Perform minor iterations:

- Find peak
- Subtract scaled PSF at peak with small gain
- Repeat until highest peak ~80-90% decreased

2) Major iteration: 'Correct' residual

- Predict visibility for current model
- Subtract predicted contribution and re-image

gridmode wprojplan facets	= 'wio es = =	defield' -1 1	<pre># Gridding kernel for FFT-based # transforms, default='' None # Number of w-projection planes fo # convolution; -1 => automatic # determination # Number of facets along each axis</pre>	CASA clean implementation
			<pre># (main image only)</pre>	

w-PROJECTION

Take the GOODS-N field as observed by 1.4 GHz e-MERLIN

w-PROJECTION

Source 1: Near the pointing centre

No w-projection

Pretty much identical! Small field approximation holds and 2D FT suffices

w-projection

w-PROJECTION

Source 2: Away from the pointing centre

No w-projection

Small field approximation breaks and you need w-projection!

w-projection

MULTI-FREQUENCY SYNTHESIS

• Multi-frequency synthesis (MFS) means gridding different frequencies on the same uv grid

Figure 16.1: Left (a): VLBA (u, v) coverage for a full track at $\delta = 50^{\circ}$. Right (b): Using MFS observations with 8 frequencies spread over 25%.

Conway & Sault (1995)

MULTI-FREQUENCY DECONVOLUTION

• Similar but not the same! (same name often used). Also known as multi-term multi-frequency synthesis (MTMFS) imaging.

Takes spectral variation of sky brightness distribution into account during deconvolution using linear Taylor series approximation.

 I_{ν}^{m} represents the sky emission in terms of a Taylor series about a reference frequency:

$$I_{\nu}^{m} = \sum_{t=0}^{N_{t}-1} b_{\nu}^{t} I_{t}^{\text{sky}} \text{ where } b_{\nu}^{t} = \left(\frac{\nu - \nu_{0}}{\nu_{0}}\right)^{t}$$

A power model is used to describe the spectral dependence of the sky. One practical choice is a power law with emission.

$$I_{\nu}^{\rm sky} = I_{\nu_0}^{\rm sky} \left(\frac{\nu}{\nu_0}\right)^{I_{\alpha}^{\rm sky} + I_{\beta}^{\rm sky} \log\left(\frac{\nu}{\nu_0}\right)}$$

- Useful for wideband, high dynamic range and sensitive imaging.
- Incorporated in CASA in combination with multi-scale CLEAN as 'mtmfs'

SELF-CALIBRATION USING CLEAN

Self-calibration recap:

Given:
$$V_{ij}^{
m obs} = G_{ij} V_{ij}^{
m real}$$

And.. repeat until model/solution converges!

SELF-CALIBRATION USING CLEAN

- Clean components can be used as calibration model
- Often applied as:

SELF-CALIBRATION USING CLEAN

Self-calibration improvements on C-band e-MERLIN observations of 3C277.1

27

PRIMARY BEAM CORRECTION

- Correction is required for the antenna response
- This is called "primary beam" correction (as opposed to the synthesized beam / psf)
- For dishes, the primary beam is ~constant but can be very complex away from the FWHM.

To correct for: multiply final image with the inverse beam!

Scalar for total brightness, matrix for polarised

PRIMARY BEAM CORRECTION

Complex sidelobe structure + asymmetries!

PRIMARY BEAM CORRECTION

Primary beam corrected JVLA+MERLIN image of GOODS-N

Note the increased noise level towards the edge of the field

VARIABLE PRIMARY BEAMS

- Primary beam of arrays can vary with time and frequency!
- Has to be accounted for during cleaning and primary beam correction if imaging the whole primary beam (CASA has this for the JVLA + ALMA. VLBI arrays don't image the pb often!)

VARIABLE PRIMARY BEAM

Primary beam spectral variation for the UK Lovell Telescope 1.4-1.6GHz

What if this is our primary beam and we want to see the FR-I galaxy too?

We can use multiple pointings and combine them with correct weighting

- To create the mosaicked image $\,M(l,m)\,$
- Need to weight with $1/\sigma^2$ = (primary beam)² or $B_i^2(l,m)$

$$M(l,m) = \frac{\sum_{i} B_{i}^{2}(l,m)(I_{i}(l,m)/B_{i}(l,m))}{\sum_{i} B_{i}^{2}(l,m)}$$
$$= \frac{\sum_{i} B_{i}(l,m)I_{i}(l,m)}{\sum_{i} B_{i}^{2}(l,m)}$$

Some telescopes like ASKAP are equipped with Phased Array Feeds that enable simultaneous multi-beam imaging of a field

DIRECTION DEPENDENT CALIBRATION

- Direction dependent (DD) effects may need further corrections applied during imaging... not a fully solved problem!
- Can be ionosphere, tropospheric, instrumental (e.g. a projection)
- Affects position, brightness & polarisation angles!

DIRECTION DEPENDENT CALIBRATION

Possible solutions:

- Image in small 'facets' where DD's effects are constant
- Peeling
- Direction-dependent calibration during visibility gridding (LOFAR does this)
- For VLBI, multi-source self-calibration (below)

Pre-MSSC

Declination (J2000)

SUMMARY

Topics discussed:

- CLEAN
- When to use Multi-scale or other deconvolution methods
- The effect of and solution to w-terms
- Multi-term deconvolution
- Self-calibration using CLEAN components
- Primary beam correction
- Mosaicking
- Direction-dependent effects during imaging