Lecture 7: Fringe-fitting

Dr. Leah Morabito

UKRI Future Leaders Fellow

DARA Unit 4 May 2021

Further calibration

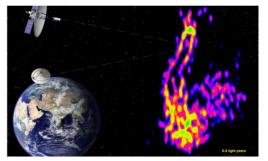
Use a skymodel of the **true visibilities** to solve for the rest of the Jones matrices:

 $\vec{V}_{ij}^{\text{obs}} = M_{ij} B_{ij} F_{ij} G_{ij} D_{ij} E_{ij} P_{ij} T_{ij} \vec{V}_{ij}^{\text{true}}$

Remember these Jones matrices contain visibility-like information, which is represented as *complex numbers* (a+bi) that can be decomposed into **amplitudes** and **phases**

Outline

- Recap of Very Long Baseline Interferometry (VLBI)
- Fringe-fitting fundamentals
- Fringe-fitting in practice


Recap of VLBI

Tanami

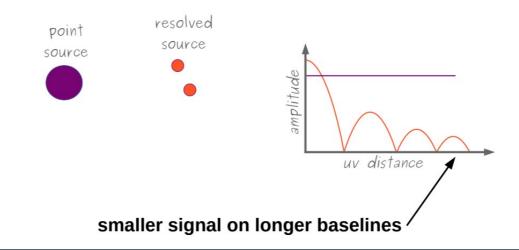
RadioASTRON

4

Recap of VLBI

 Common element: stations are so far apart that they require separate (non-distributed) clocks

This drives:


- Non-(near)-real time correlation
- Clock / delay correction required
- Lower tolerance for errors in geometric model of array
- Having to cope with resolved sources

Recap of VLBI

• What part does resolution play? baseline sensitivity: $S_{ij} = \sqrt{\frac{S_{sys,i}}{\sqrt{2\Delta\nu\Delta t}}} \frac{S_{sys,j}}{\sqrt{2\Delta\nu\Delta t}}$

note there is no dependence on baseline length!

what impact does source structure have?

Fringe-fitting fundamentals

take the relation between phase and delay:

$$\phi_{\nu,t} = 2\pi\nu\tau_t$$

differentiating with respect to time yields:

$$\mathrm{d}\phi_{\nu,t} = 2\pi\nu\mathrm{d}\tau_t$$

the error in is dependent on both $oldsymbol{
u}$ and $oldsymbol{t}$

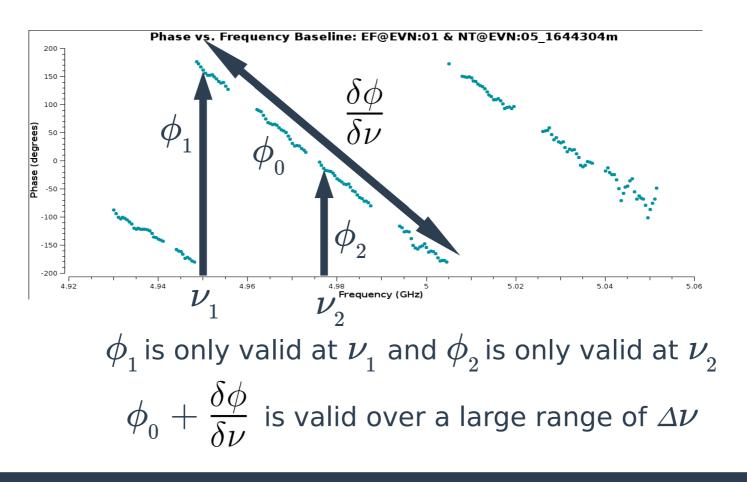
take the first order expansion:

$$\Delta \phi_{\nu,t} = \phi_0 + \left(\frac{\delta \phi}{\delta \nu} \Delta \nu + \frac{\delta \phi}{\delta t} \Delta t \right)$$
frequency
dependence
time
dependence

Fringe-fitting fundamentals

$$\Delta \phi_{\nu,t} = \phi_0 + \left(\frac{\delta \phi}{\delta \nu} \Delta \nu + \frac{\delta \phi}{\delta t} \Delta t \right)$$

$$\phi_0$$
 = the **phase** error at ν_0 , t_0
 $\frac{\delta\phi}{\delta\nu}$ = the **delay** or delay residual
 $\frac{\delta\phi}{\delta t}$ = the **rate**, delay rate, or rate residual


normal phase calibration only estimates $\phi_{m 0}$

Fringe-fitting is any process that also estimates *delays* and *rates* Effectively increases S/N by increasing solution interval

Fringe-fitting fundamentals

How does solving for delays and rates increase S/N?

a practical example of delays

Baseline-based fringe-fitting

The fringe-fitting equation can be written in terms of individual baselines, e.g. with antennas *i*,*j*:

$$\Delta\phi_{ij} = \phi_{i,0} - \phi_{j,0} + \left(\left[\frac{\delta\phi_i}{\delta\nu} - \frac{\delta\phi_j}{\delta\nu} \right] \Delta\nu + \left[\frac{\delta\phi_i}{\delta t} - \frac{\delta\phi_j}{\delta t} \right] \Delta t \right)$$

so you can construct this equation for each pair of baselines and solve for phases, delays, and rates on each baseline!

Disadvantages:

- The source must be detected on all baselines
- Antenna-based quantities are not conserved

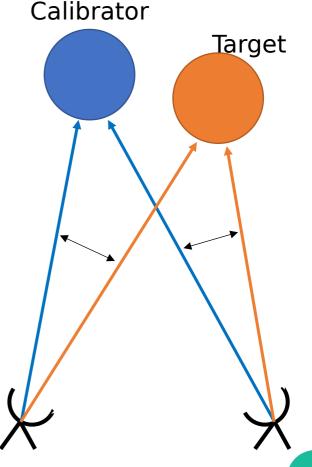
Global fringe-fitting

Global fringe-fitting is usually what people mean when they say *fringe-fitting*. Here we use the baseline-based equations:

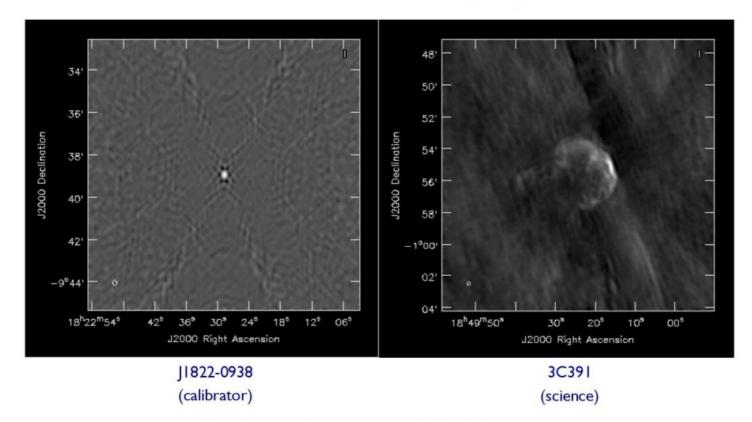
$$\Delta\phi_{ij} = \phi_{i,0} - \phi_{j,0} + \left(\left[\frac{\delta\phi_i}{\delta\nu} - \frac{\delta\phi_j}{\delta\nu} \right] \Delta\nu + \left[\frac{\delta\phi_i}{\delta t} - \frac{\delta\phi_j}{\delta t} \right] \Delta t \right)$$

but now we solve for the entire system of equations *simultaneously* to find antenna-based solutions!

Major advantage:

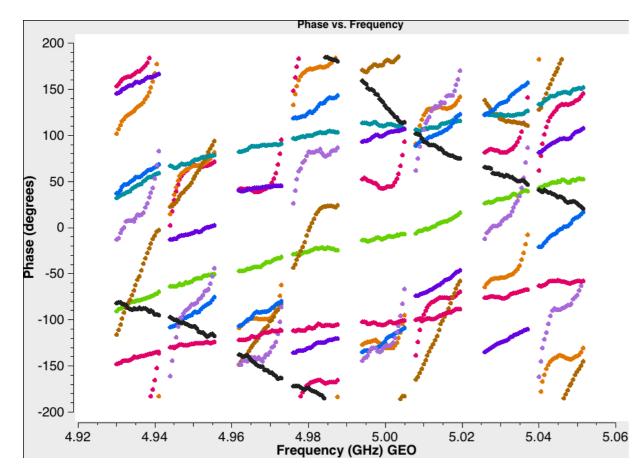

 Even if an antenna doesn't see the source on every baseline, the antenna-based solution can still be found!

- **Global fringe-fitting** is implemented in CASA
- Sets one antenna as the reference antenna, and finds the phases, delays, and rates for all other antennas
- The solutions are therefore *relative* to the reference antenna
- Calibrator source is needed to find the solutions
 - Assumed to be a bright point source unless model is given
 - A point source has constant phase in the *u-v* plane
- Phase corrections only; no amplitudes!


> inp(fri					
# _. fringefit :: F	•	t delay a	and		
vis	=			#	Name of input visibility file
caltable	=			#	Name of output gain calibration table
field	=			#	Select field using field id(s) or field name(s)
c b <i>i</i>	=			# #	Select spectral window/channels
spw intent	=			#	Select observing intent
selectdata		True		#	Other data selection parameters
timerange	_	1140		#	Select data based on time range
uvrange	=			"	Seteet data based on time range
antenna				#	Select data based on antenna/baseline
scan				#	Scan number range
observation		• •		#	Select by observation ID(s)
msselect				#	Optional complex data selection
				#	(ignore for now)
solint	=	'inf'		#	Solution interval: egs. 'inf', '60s'
				#	(see help)
combine	=			#	Data axes which to combine for solve
				#	(obs, scan, spw, and/or field)
refant	=			#	Reference antenna name(s)
minsnr	=	3.0		#	Reject solutions below this signal-
				#	to-noise ratio (at the FFT stage)
zerorates	=	False		#	Zero delay-rates in solution table
globalsolve	=	True		#	Refine estimates of delay and rate
d - 1		r 1		#	with global least-squares solver
delaywindow	=	[]		#	Constrain FFT delay search to a
				# #	window; a two-element list, units o
ratewindow	=	[]		# #	nanoseconds Constrain FFT rate search to a
Tatewindow	-	[]		#	window; a two-element list, units o
				#	seconds per second
append	=	False		#	Append solutions to the (existing)
appena		, a coc		#	table
docallib		False		#	Use callib or traditional cal apply
				#	parameters
gaintable		[]		#	Gain calibration table(s) to apply or
				#	the fly
gainfield		[]		#	Select a subset of calibrators from
				#	gaintable(s)
interp		[]		#	Temporal interpolation for each
				#	gaintable (=linear)
spwmap		[]		# #	<pre>Spectral windows combinations to for for gaintables(s)</pre>
parang	=	False		#	Apply parallactic angle correction or
				#	the fly

Phase referencing

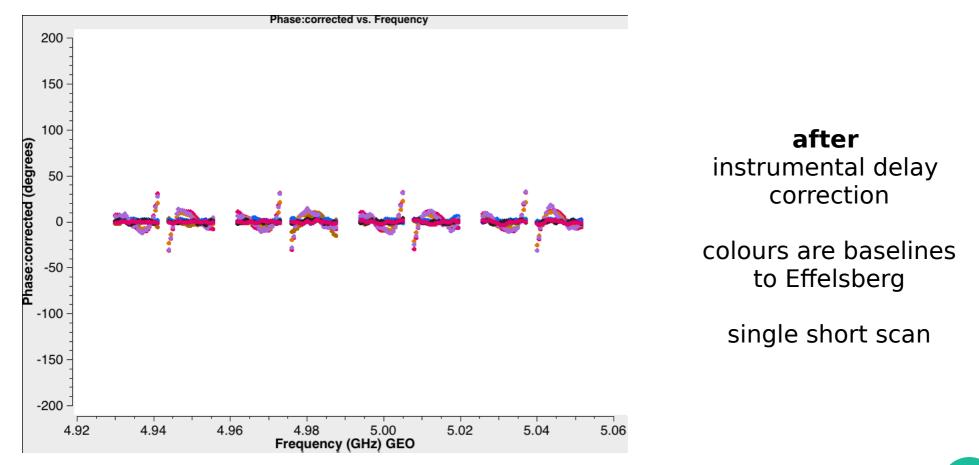
- Use **Global fringe-fitting** to find phases on calibrator source near target
 - Calibrator structure is known (target unknown)
- Interpolate phase solutions to target
- Typically observations will "nod" between the calibrator and target, with a cycle time set by the timescale of atmospheric fluctuations
 - \sim 10 min at 5 GHz ; \sim 5 min at 1.6 GHz
- Calibrator and target must be close!
 - Typically within ~1 deg
- Biggest problem is the atmosphere
 - Troposphere at high freqs, ionosphere at low



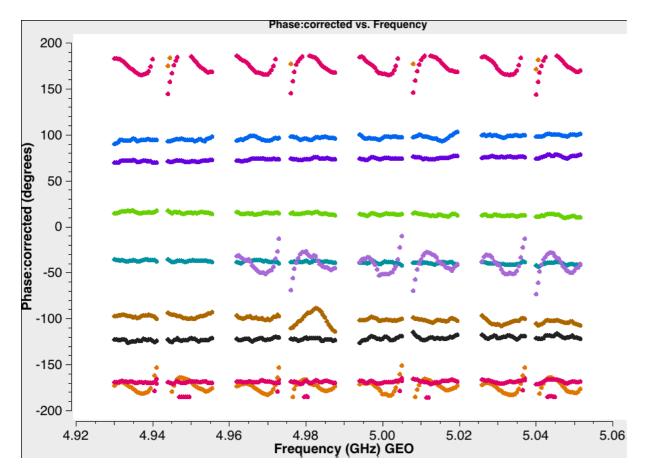
Phase referencing

Transfer calibration solutions to target, 3C391

- Instrumental delays
 - Differing "instrument" responses across spectral windows
 - Time independent



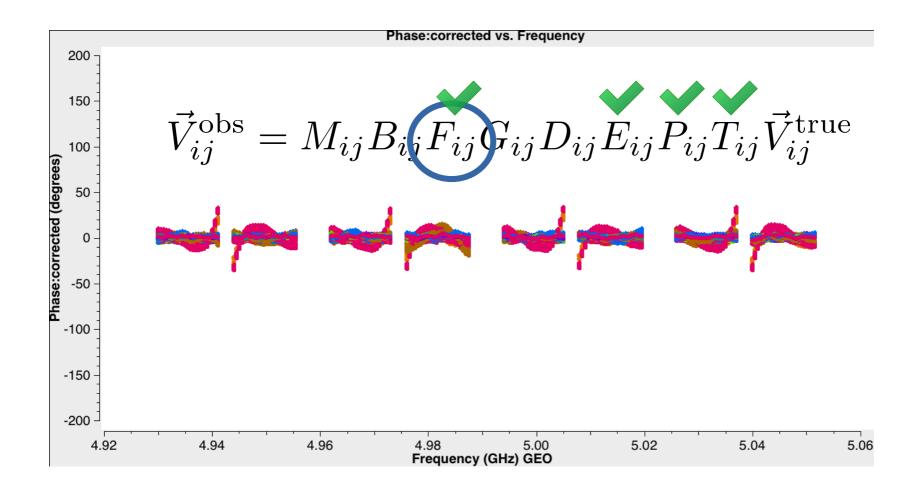
before instrumental delay correction


colours are baselines to Effelsberg

single short scan

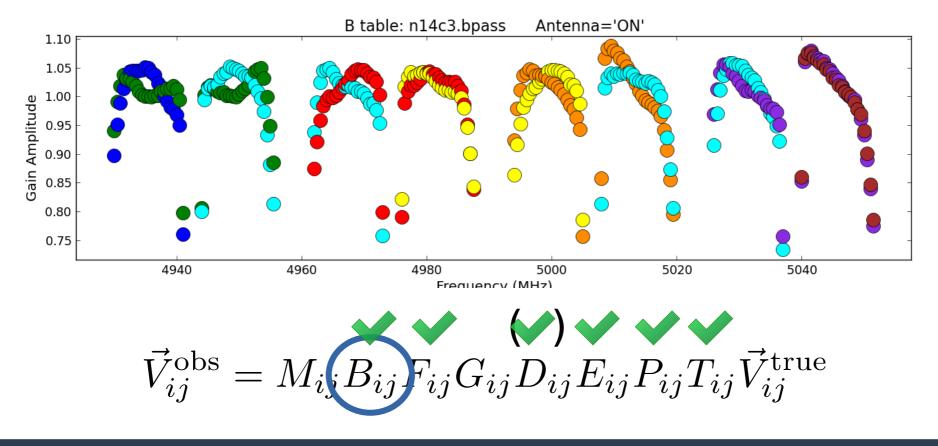
- Instrumental delays
 - Differing "instrument" responses across spectral windows
 - Time independent

- Instrumental delays
 - Differing "instrument" responses across spectral windows
 - Time independent

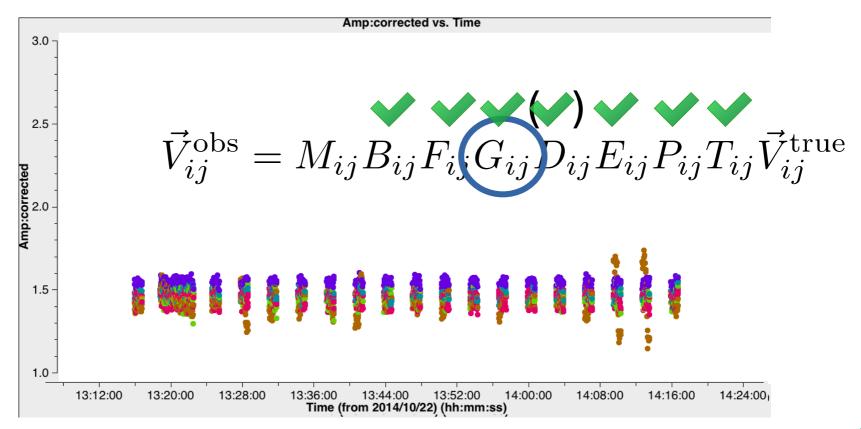


applied to a different scan

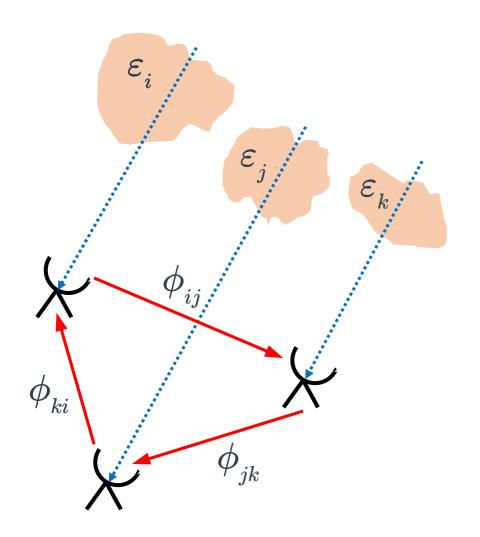
colours are baselines to Effelsberg


single short scan

- Multi-band fringe-fitting
 - Have removed the instrumental effects, now get rid of atmospheric effects


And now for the amplitudes ...

- Fringe-fitting only solves for phases, so the amplitudes still need to be corrected.
- Bandpass calibration derives amplitude as a function of frequency for each antenna
 - using a well-known, very bright calibrator source need good S/N per channel!



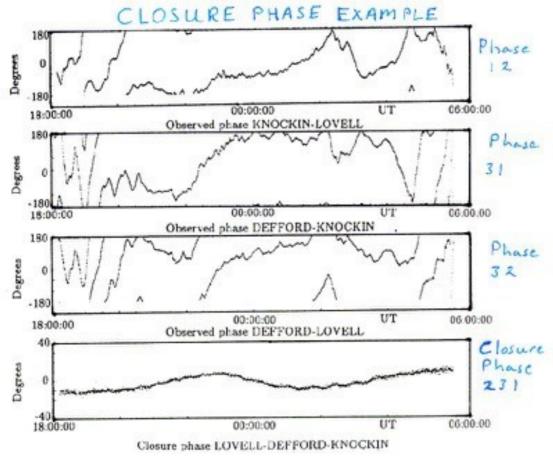
And now for the amplitudes ...

- Gain calibration will take care of time-dependent amplitudes
 - due mainly to variable gain in the antenna amplifiers

Non-closing errors

On each baseline, the observed phase is related to the real phase + antenna errors:

$$\phi_{ij,obs} = \phi_{ij} + \varepsilon_i - \varepsilon_j$$
$$\phi_{jk,obs} = \phi_{jk} + \varepsilon_j - \varepsilon_k$$
$$\phi_{ki,obs} = \phi_{ki} + \varepsilon_k - \varepsilon_i$$


Summing these around a triangle of antennas gives us the **closure phase:**

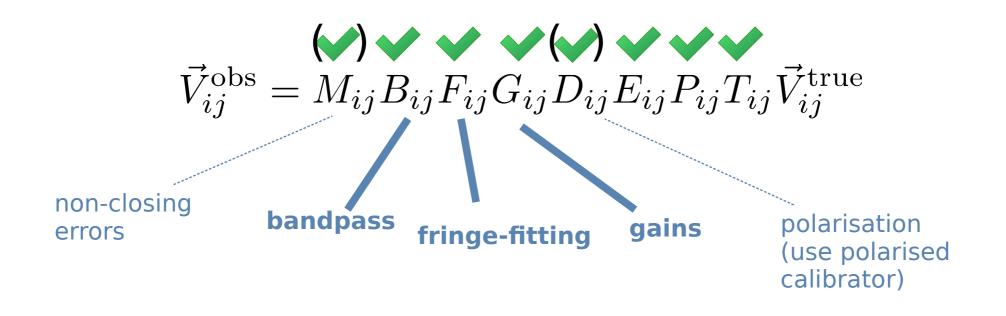
$$\phi_{ij,obs} + \phi_{jk,obs} + \phi_{ki,obs}$$

$$=\phi_{ij}+\phi_{jk}+\phi_{ki}$$

note that the errors all cancel if you go around the triangle in one direction!

Non-closing errors

If everything is calibrated perfectly, the closure phases should be flat!


Residuals are *non-closing errors,* which can come from baseline-based errors

Three main sources:

- Source structure not correct in model (self-calibration)
- Time averaging
 - Atmospheric conditions can change on very short timescales (don't average)
- Frequency averaging
 - Bandpass response varies per telescope as function of frequency (don't average)

Summary

- Recap of Very Long Baseline Interferometry (VLBI)
- Fringe-fitting fundamentals
- Fringe-fitting in practice