

Introduction to CASA & the Measurement Set (MS)

Adam Avison

What is CASA?

Common Astronomy Software Applications

- Does everything you need to take raw visibilities from a telescope and turn them into science ready data.
- Aims to support the current and next generation of radio telescopes (ALMA, JVLA, ngVLA and many more).
- Developed by a consortium; NRAO, ESO, NAOJ, CSIRO, and ASTRON.

Obtaining CASA

- CASA homepage: <u>https://casa.nrao.edu/</u>
- Download page: <u>https://casa.nrao.edu/casa_obtaining.shtml</u>
- CASA Documentation: <u>https://casa.nrao.edu/casadocs/latest/</u>

Getting started

- The latest version of CASA is 5.7^*
- Versions from Linux (Red Hat only) and macOS.

* There is a separate release track under the version number 6.x but we won't use these for this session.

Working with CASA

- Once installed CASA can be started by typing 'casa' in a terminal.
- This will startup the iPython interface in the terminal and launch the Logger GUI

The iPython interface is where the work gets done

Logger will show you *lots* of useful message from the tasks being run.

			Log Messages (:/U	sers/aavison/Documents/ALMA/ALMA_Public/Preston2019/casa-20190118-102944.log)	
		XL	Search Message:	Filter: Time 😋	C
Time		Priority	Origin	Message	
2019-01-18	10:29:51	INFO	::casa		
2019-01-18	10:29:51	INFO	::casa	CASA Version 5.4.0-68	
Insert Message:				🔶 🕢 C 🗆 Lock scroll	

CASA tasks

- Tasks in CASA are the commands which are used to preform a specific function.
- Each contain a set of user definable parameters.
- To see what parameters a task has we can use the inp command.

Example: applycal

• **applycal** is the task used to apply calibration tables to the data.

[CASA < 11 >: inp app	lycal			1
> inp(app	lycal) libertions -		
# applycal :: App	- ca	LIDFALIONS S	ocución #	Nome of input wisibility file
field			#	Soloct field using field id/c) or
Tietu			#	field name(c)
SPU			#	Select spectral window/channels
intent			#	Select observing intent
selectdata		True	#	Other data selection parameters
timerange	_	11	#	Select data based on time range
uvrange			#	Select data within uvrance (default
arrange			#	units meters)
antenna			#	Select data based on antenna/baseline
scan			#	Scan number range
observation			#	Select by observation ID(s)
msselect			#	Optional complex data selection
			#	(ignore for now)
docallib	=	False	#	Use callib or traditional cal apply
and the second				parameters
gaintable		[]		Gain calibration table(s) to apply on
				the fly
gainfield		[]		Select a subset of calibrators from
				gaintable(s)
interp		[]		<pre>Interp type in time[,freq], per</pre>
				gaintable. default==linear,linear
spwmap		[]		Spectral windows combinations to form
				for gaintables(s)
calwt		[True]		Calibrate data weights per gaintable.
parang		False	#	Apply parallactic angle correction
applymode			#	Calibration mode: ""="calflag","calfl
			#	agstrict","trial","flagonly","flagon
			#	lystrict", or "calonly"
flagbackup		True	#	Automatically back up the state of
			#	Tlags before the run?
CASA <12>:				

• Typing just inp will give you the inputs for the last CASA task you used.

Getting more information

 For most parameters within a task you can get more information on what it wants by typing help(par.<param_name>)

```
[CASA <17>: help par.field
 ----> help(par.field)
Help on function field in module parameter_dictionary:
field()
    field -- Select field using field id(s) or field name(s).
            [run listobs to obtain the list ids or names]
    default: 0 (for sdimaging)
             '' = all fields (for the other ASAP tasks)
    If field string is a non-negative integer, it is assumed a field index
    otherwise, it is assumed a field name
             field='0~2'; field ids 0,1,2
             field='0,4,5~7'; field ids 0,4,5,6,7
             field='3C286,3C295'; field named 3C286 adn 3C295
             field = '3,4C*'; field id 3, all names starting with 4C
    This selection is in addition to scanlist, iflist, and pollist.
    See help par.selectdata for additional syntax.
    See specific task for any additional details.
 END)
```

Getting even more information

- CASA can take you straight to the CASA documentation webpage for a given task.
- For the table of contents you can type doc('toc')
- For some specific tasks you can type e.g. doc('applycal')
- Alternately, a Google search for 'CASAdocs NRAO <task name>' should bring up the relevant page. (Beware Google seems to preferentially point to the ~2010 docs so make sure you get the more recent versions)

Working with CASA

- To execute a task:
 - 1. Default the task parameters with **default(taskname)**
 - 2. Fill in all the parameters you need
 - 3. Do an inp to check you've filled everything in the right format
 - 4. Type the task name to execute it

	[CASA < 38 >: default	(applycal)			1	
	[CASA < 39 >: vis='my	vis.ms']	
	[CASA < 40>: field='	G123.45'			1	
	[CASA < 41>: spw= 0				1	
► S Ie II	<pre>[CASA <42>: inp > inp() # applycal :: App vis field spw</pre>	ly calibrations sol = 'myvis.ms' = 'G123.45' = 0	utior # # # #	ns(s) to data Name of input visibility file Select field using field id(s) or field name(s) Select spectral window/channels]	
	[CASA < 43 >: spw='0'				1	
	<pre>[CASA <45>: inp > inp() # applycal :: App vis field spw [CASA <46>: applyca > applyca</pre>	<pre>ly calibrations sol = 'myvis.ms' = 'G123.45' = '0' l l l()</pre>	utior # # #	ns(s) to data Name of input visibility file Select field using field id(s) or field name(s) Select spectral window/channels]	

Here CASA checks your input is of the right format. It will appear red if it is wrong You can also enter the command and a list of parameters in one line e.g.

applycal(vis='myVis.ms', field='G123.45', spw='0')

CASA Data

- CASA runs on visibilities and images which are themselves a directory structure.
- Raw visibilities come in ASDM (archival science data model) format.
- After import into CASA these visibilities in the MeasurementSet (MS) format.

[cambria:TWHYA_tu	torial aavison\$ l	<pre>s sis14_twhya_cal</pre>	<pre>ibrated_flagged.ms</pre>
ANTENNA	PROCESSOR	table.f14	table.f23
ASDM_ANTENNA	SORTED_TABLE	table.f15	table.f23_TSM1
ASDM_CALWVR	SOURCE	table.f16	table.f24
ASDM_RECEIVER	SPECTRAL_WINDOW	table.f17	table.f24_TSM1
ASDM_STATION	STATE	table.f17_TSM1	table.f3
CALDEVICE	SYSCAL	table.f18	table.f4
DATA_DESCRIPTION	SYSPOWER	table.f19	table.f5
FEED	WEATHER	table.f2	table.f6
FIELD	table.dat	table.f20	table.f7
FLAG_CMD	table.f1	table.f20_TSM0	table.f8
HISTORY	table.f10	table.f21	table.f9
OBSERVATION	table.f11	table.f21_TSM1	table.info
POINTING	table.f12	table.f22	table.lock
POLARIZATION	table.f13	table.f22_TSM1	

The Measurement Set

- As viewed from a terminal an MS appears as a directory containing subdirectories and data in binary format. (i.e. the image on the last slide)
- To get a look at that data we need to use the CASA task **browsetable**

	UVW	DATA	FLAG	ANTENNA1	ANTENNA2	TIME CENTROID	FLAG CATEGO
723	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	20	20	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
724	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	21	21	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
725	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	22	22	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
726	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	23	23	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
727	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	24	24	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
728	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	25	25	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
729	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	26	26	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
730	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	27	27	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
731	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	28	28	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
732	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	29	29	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
733	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	30	30	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
734	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	31	31	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
735	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	32	32	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
		10001	[0 1000]	<i>2</i>			10 0 01

This is an example MS MAIN table. Each **Column** contains information of a specific type. Here we see the *uvw* values, Visibility Data, antenna numbers, time values and flagging information. There are a lot more columns than shown here.

	-			5140				
	723	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	20	20	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
	724	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	21	21	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
	725	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	22	22	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
ata	726	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	23	23	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
able d	727	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	24	24	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
-	728	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	25	25	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
vords	729	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	26	26	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
key	730	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	27	27	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
table	731	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	28	28	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
s	732	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	29	29	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
word	733	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	30	30	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
ld ke)	734	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	31	31	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
fie	735	[0, 0, 0]	[2, 1920] Complex	[2, 1920] Boolean	32	32	2016-03-12-09:01:06.00	[0, 0, 0] Boolean
			[0 1000]	10201				[0 0 0]

Each Row gives you the information for a given Column at a unique **Baseline** at a unique **Time**. Time increases as you scroll down the table. In Addition to the MAIN table there are many subtables in an MS which can be navigated using browsetable

	🛑 🕘 🗧 Table Browser										
5				SDC18.816-0.447_1.split.cal	8						
	_	Keyword	Туре	Value	Extra Information						
	1	MS_VERSION	Float	2							
	2	ANTENNA	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has 37 rows.						
	3	3 DATA_DESCRIPTION		/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has 1 rows.						
	4	FEED	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has 37 rows.						
lata	5	FLAG_CMD	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has 6939 rows.						
e	6	FIELD	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has 1 rows.						
tab	7	HISTORY	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has 1346 rows.						
	8	OBSERVATION	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has 1 rows.						
ъ В	9	POLARIZATION	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has 2 rows.						
S I	10	PROCESSOR	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has 4 rows.						
ě	11	SPECTRAL_WINDOW	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has 1 rows.						
e	12	STATE	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has 4 rows.						
ta	13	SOURCE	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has 1 rows.						
	14	POINTING	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has no rows.						
rds	15	WEATHER	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has 295 rows.						
Ň	16	SYSCAL	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has no rows.						
ke	17	SYSPOWER	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has no rows.						
eld	18	CALDEVICE	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has no rows.						
4	19	ASDM_ANTENNA	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has 37 rows.						
	20	ASDM_CALATMOSPHERE	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has 1332 rows.						
	21	ASDM_CALWVR	Table	/Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/make	Subtable has 740 rows.						
					a						

Browsing table: /Users/aavison/Documents/Observations/GaryALMA/CONTINUUM_PROJECT/makelsolatedWork/SDC18.816-0.447_1.split.cal

Finally, some handy things in CASA:

- In the CASA terminal pressing the up arrow key will show you previous commands you have used.
- If you type a letter or part of a word and press the up arrow it will scroll through previously entered commands which start with those letters.
- The CASA terminal also "tab completes" so if you start typing something and hit the Tab key you'll be given a list of options which match the text you have written so far.
- If you run a task and exit CASA, then restart CASA later in the same directory you can type tget <taskname>. This will restore the previous parameters from your last *successful* run of that task. (They are stored in the <taskname>.last file you will see popping up as you run CASA)

Which software to use?

