

Modern Interferometers

Joe Callingham

Kenyan Radio Astronomy School (Unit 4) 28th of May 2018

UNIVERSIT

Fantastic Interferometers and Where to Find Them

FANTASTIC BEASTS & THERE TO FIND THEM

Newt Scamander

Property of: Harry Potter

MAYBE JUST....

A LITTLE BIT ...?

What makes an interferometer "modern"?

- > Advancements in information, dish, and antenna technology now allow:
- 1. Aperture arrays (or phased-array feeds)
- 2. Highly accurate dish shapes for sub-mm observing
- 3. Complex and high-computing power backends
- Advancements in signal processing now allow much wider bandpasses (e.g. ATCA went from a bandwidth of 128 MHz to 2 GHz, JVLA now at 4 GHz).

Single Pixel Feed

- Only sampling a single pixel of the focal plane with all radiation focused onto single receiving element.
- Old technology that has been tried and tested on the JVLA, ATCA, etc

Parabolic reflector (mechanical)

Aperture Array

- > Why have a dish at all?
- Sample the whole wavefront by introducing electronic delays
- Number of elements *n* needed to sample an aperture area *A*?

 $n \propto A / (\lambda/2)^2$

> So for a 100m aperture and $\lambda \sim 20$ cm, $n = 10^4$! Electronics cost too high for a long time.

Eye on the Sky

One eye to see them all

Amazing uv-coverage

VLA

MWA

Wish you had a dish?

Aperture Arrays

- Low cost.
- Variable collectir
- Large field-of-view.
- Used at low-frequencies.
- Non-uniform directional response.
- Poorly understood beam pattern.

- ng area (~A_{geo}).
 - Small field-of-view.
 - Used at high-frequencies.
 - Uniform directional response.
 - Well understood beam pattern. John McKean

Phased Array Feed (PAF)

- Put an aperture array at the focal point, able to fully sample
- Ability to beam form, such as changing the beam pattern and beam weight
- Increase FoV, great for high survey speed

Parabolic reflector with array feed (hybrid: mechanical & electronic)

The radio sky

Low Radio Frequency Sky AST (RON

5 m c

- When did reionization happen?
- How fast did it happen?
- What were the sources of reionization (stars? galaxies?)

ASTRON

The SED Revolution with GLEAM GLL EXA

- > MWA GLEAM survey (Hurley-Walker, Callingham et al. 2017)
 - 305,615 sources over 59% of the sky at 2' resolution, $\sigma \sim 10$ mJy
 - every source: 20 fluxes spanning 72 231 MHz

LOFAR

- > Two telescopes really (78 MHz bandwidth):
 - HBA (110 180, and 210 240 MHz)
 - LBA (10 90 MHz)

LOFAR – long baselines

Shimwell et al. (in prep.)

NVSS – 50 sources per square degree

36.75' x 20.55

LoTSS

Shimwell et al. (in prep.)

FIRST – 90 sources per square degree

Shimwell et al. (in prep.)

LoTSS – 750 sources per square degree

36.75' x 20.55'

Stuck in the middle - ASKAP

- > 36 x 12 m dishes sensitive between 0.7 to 1.8 GHz (300 MHz bandwidth)
- > Early science underway now!
- Surveys, surveys, surveys
- > Survey speed set by
 - Number of pixels/beams N_b
 - Beam area Ω_b
 - Bandwidth B
 - Collecting area A_{eff}
 - System Temp T_{sys}

$\mathrm{SVS} \propto N_\mathrm{b} \, \Omega_\mathrm{b} \, B \, \left(A_\mathrm{eff} / T_\mathrm{sys} ight)^2$

Stuck in the middle - ASKAP

Bannister et al. (2017)

AST(RON

Stuck in the middle - ASKAP

Stuck in the middle - Apertif

> 14 x 25 m dishes sensitive between 1.0 to 1.8 GHz (300 MHz bandwidth)

Stuck in the middle - MeerKAT

- > 64 x 14 m dishes sensitive between 0.6 to 1.8 GHz and 8 to 14 GHz (4 GHz bandwidth)
- > 8 km longest baseline
- Operational early 2018

Old School Cool - JVLA

AST(RON

- > 27 x 25 m antennas (36 km longest baseline)
- > 230 MHz to 50 GHz (4 GHz bandwidth)
- Focused on followup of sources rather than widefield surveys (with obvious exceptions of NVSS and FIRST)
- Most prolific radio telescope in terms of published papers
- Heavily oversubsribed

Old School Cool - ATCA

- > "VLA of the south" with 6 x 25 m antennas (longest baseline of 6 km)
- > Excellent frequency coverage of 1 to 100 GHz with 2 x 2 GHz bandwidth

What science with these instruments?

uJy level sensitivity will allow investigations of,

i) the star-forming population (radio-FIR correlation).

ii) radio quiet-AGN.

The sub-mm sky

- Interferometer of the next generation
- > 54 x 12 m dishes (maximum baseline of 15 km)
- > 85 GHz to 1 THz
- Dominated by dust emission (not synchrotron) – different science goals (often)

"Experimental" interferometers

UTMOST

CHIME

LWA

VLBI

AST(RON

EVN, VLBA, e-Merlin (all can achieve milliarcsecond resolution at GHz freq)

The future – SKA-low and SKA-mid **AST**(RON

- SKA-Low (50 to 350 MHz) 130000 dipole antennas making it 8 x more sensitive than LOFAR
- SKA-mid (1 GHz to 14 GHz) 130 x 15 m offset Gregorian dishes + 64 MeerKAT dishes (194 in total). 5 x more sensitive than the JVLA. 4 x better resolution than the JVLA

Image Quality Comparison AST (RON

• Single SKA1-Low snap-shot compared to LOFAR-INTL snap-shot

The future - ngVLA

- > 10 times the collecting area of JVLA and ALMA
- science operations from 1.2 to 116 GHz. Bridge 'gap' between SKA and ALMA
- > 10x longer baselines (300 km) that yield masresolution,
- a dense antenna core on km-scales for low surface brightness imaging.

AST(RON

QUIZ!

You want to get a spectrum of a star-forming galaxy to understand the nonthermal and thermal contribution. It is located in the Southern Hemisphere. Which telescope should you use?

> You want to detect the EoR. Which telescope?

QUIZ!

You want to be able to study the (very intricate) knots in the lobes and jets of Hercules A. Which telescope should you use?

QUIZ!

You want to model the composition of HI gas in galaxies out to a redshift of ~0.5. Which telescope is ideal to use?

Summary

AST(RON

- > Complete zoo of modern interferometers.
- The next generation tools will use phase-arrays or correlate hundreds of antennas.
- > You don't know where the next advance will come from!
- Lots of science questions still to be solved and you will help solve them using the best interferometers ever made.

