AST(RON

Fringe Fitting: Correcting for delays and rates in VLBI

Joe Callingham (ASTRON)

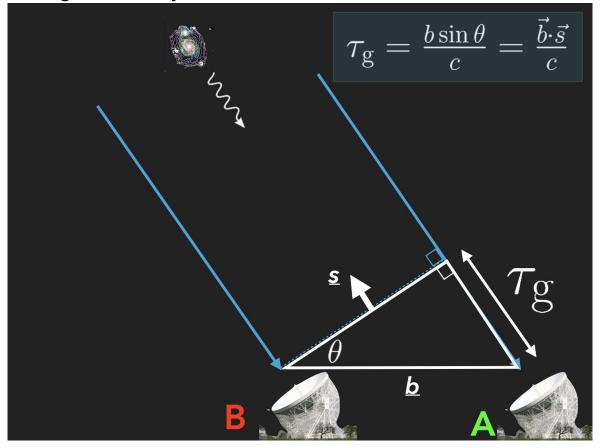
Kenyan Radio Astronomy School, Nairobi, Kenya 7th of June 2018

,,,]]]]

UNIVERSITY OF LEEDS

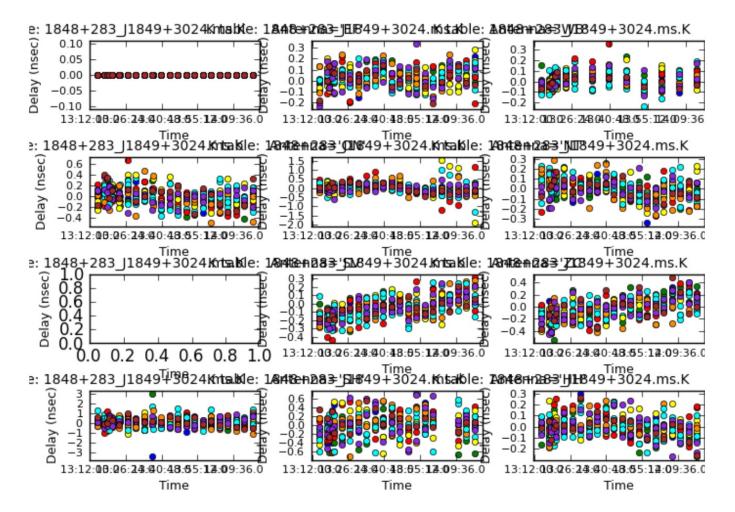
Intro to fringing

- As we know, signals detected by an interferometer are affected by a time delay (geometric time delay)
- Correlator corrects for the changes in delay but the model will have errors with get worse with distance. Correct using fringe-fitting – generalisation of phase self-cal. So fixing bad delay calibration



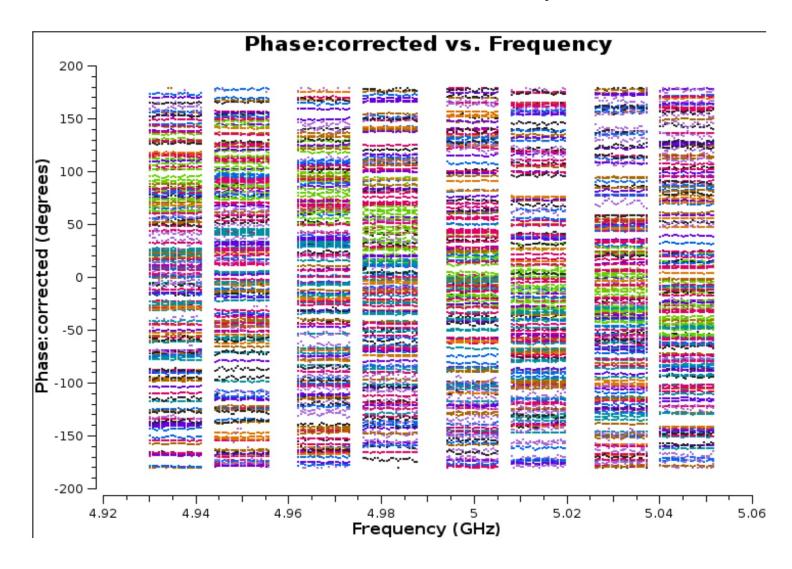
What the fring?

So you have applied Tsys, delay, bandpass, phase, and amplitude corrections on your bright primary calibrator. Delays are close to zero, but with a significant variation. This is ok for bright sources:



What the fring?

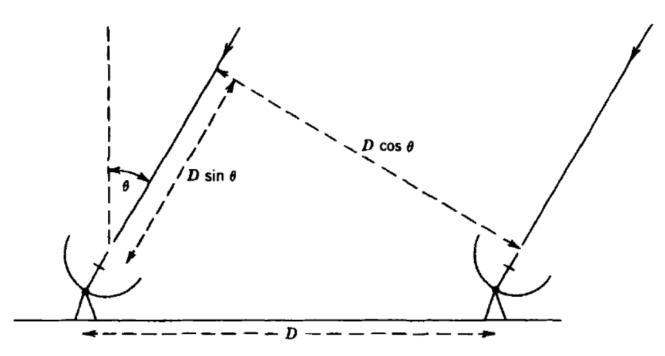
> Phases are constant but not at zero. This is not okay for faint sources



Why is this a worry now?

- Largely due to clock problems at the different locations you have clock drift that is small but can amount to a problem.
- > Other interferometers (ATCA, JVLA) have only one clock
- > Also changes of baseline geometry due to tidal effects
- > Some atmospheric affects

Fringing



- Wavefronts of a signal from a distant source, arrives at one antenna with a geometrical delay, $\tau_{obs} = D/c \sin\theta$
- $\Phi = 2\pi v \tau_{obs}$ (interferometer phase)
- τ_{obs} changes with time \rightarrow fringe rates

Linear approach

$$\phi(t,\nu) = \phi_0 + \frac{\partial \phi}{\partial \nu} \Delta \nu + \frac{\partial \phi}{\partial t} \Delta t$$
 [+dispersive delay]

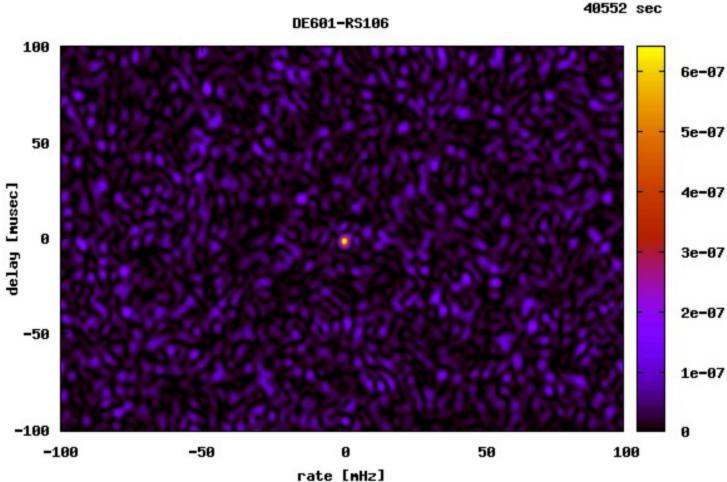
• have to determine

* phase
$$\phi_0$$

* delay $\frac{\partial \phi}{\partial \nu}$
* rate $\frac{\partial \phi}{\partial t}$

- delays and rates are stable over a longer time and wider band than $\phi(t, \nu)$
- the process to find phase, delay, rate is called 'fringe-fitting'

Delay versus rate



Solving for delay versus rates

- Sources of delay and rate errors can be separated into contributions from each antenna
- > Baseline dependent errors \rightarrow difference of antenna dependent errors
- > Phase errors for baseline i,j

$$\Delta\phi_{ij} = \phi_{i0} - \phi_{j0} + \left(\left[\frac{\partial\phi_i}{\partial\nu} - \frac{\partial\phi_j}{\partial\nu} \right] \Delta\nu + \left[\frac{\partial\phi_i}{\partial t} - \frac{\partial\phi_j}{\partial t} \right] \Delta t \right).$$

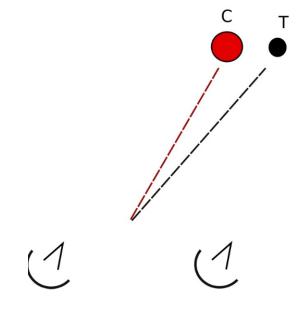
- Fringe-fitting involves solving the above equation, to obtain the errors via observations of a bright calibrator
- Without doing this you can not average in phase and time (really bad for weak targets)

AIPS – Global fringe fitting

- Use all baselines to jointly estimate the antenna phase, delay and rate relative to a reference antenna
- Solves the baseline phase error equation, with one of the antennas set to the reference antenna
- > Delay, rate and phase residuals for reference antenna are set to zero
- > Hence only measures difference, not absolute errors
- > Assumes calibrator is a bright point source at phase center
- > Similar to self-calibration as source structure is part of the model
- Implemented in AIPS (ancient radio astronomy package) but soon to be implemented in CASA (v5.3.3 and greater)

Phase Referencing

 Similar to what we have seen for our secondary calibrator, just need to be closer



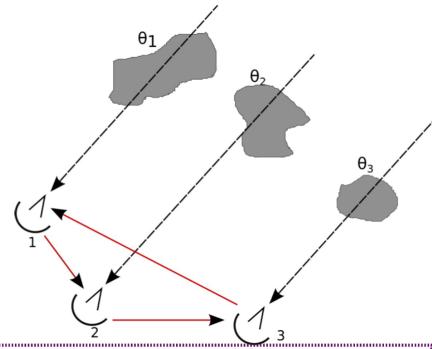
Issues:

- wet troposhere & fewer calibrators at high freq

- Ionosphere at low freq

- Fringe-fitting requires observations of a bright, compact source → the phasecalibrator, C.
- Nodding between C and target (T)
- Cycle time must be shorter than the atmospheric fluctuations
 - ~10 mins at 5 GHz; ~5 mins at 1.6 GHz
- C must be close to T (< 1 deg)
- Antenna positions must be known to within a few cm!
- Obtain solutions of the phase, rate and delay by applying the Fringe-fitting technique to C and interpolate to T

Closure Phases



Original ref: Rogers et al 1974, ApJ, 193, 293

Phase contributions from each baseline = true phase + (difference between the random atm phases) 12-> $\Phi_{12} = \phi_{12} + \theta_1 - \theta_2$

23->
$$\Phi_{23} = \phi_{23} + \theta_2 - \theta_3$$

31-> $\Phi_{31} = \phi_{31} + \theta_3 - \theta_1$

Summing the total phases from each baseline, the phases from the atm cancels:

$$\phi_{c} = \Phi_{12} + \Phi_{23} \Phi_{31} + noise$$

$$\phi_{c} = \phi_{12} + \phi_{23} + \phi_{31} + noise$$

- All antennas have different random phase fluctuations -> atmosphere
- Closure phase, φ_c = sum of simultaneously observed phases of a source on 3 baselines forming a triangle

 $\phi_{c} = \phi_{12} + \phi_{23} + \phi_{31} + noise$

- Indep. of station based phase errors
- Phase errors due to atmospheric variations are cancelled
- Fringe-fitting (and self-cal) uses this triangle to solve for the residual phases, rates and delay

Conclusions and tips

- VLBI observations, due to an imperfect delay model, will introduce residual phase, delay and rate errors
- These errors change with time and frequency, so must be removed before imaging to avoid decorrelation
- > This is only a concern (largely) of VLBI observations of faint targets

