

Re-cap of Week 1 – The Salient Points

Joe Callingham (ASTRON) and Jack Radcliffe

Botswana Radio Astronomy School, Palapye, Botswana 8th of July2018

FOURIER COMPONENTS

Writing the equation in this way allows us to visualise how our image is composed.

$$I_{meas}(l,m) = \frac{1}{M} \sum_{i=1}^{M} A(u_i, v_i) \cos[2\pi (u_i l + v_i m) + \phi_i]$$

Cat

Fourier Cat

Filtered Fourier Cat

HPF Cat

Filtered Fourier Cat

LPF Cat

a Priori Calibration

Phase Referencing Recap

observed visibility

Combined Jones matrix

ideal visibility

- 1. Observe source
- 2. Observe **calibrator** to measure gains (amplitude and phase) as a function of time.
- 3. Observe **bright calibrator** of known flux-density and spectrum to measure absolute flux calibration, band-pass and residual delays

$$J_{ij} = J_i \times J_j^*$$

CASA's formalisation of RIME

Calibration solves for each Jones matrix (when required) given a model for the sky.

How to fringe-fit?

$$\vec{V}_{ij}^{\text{obs}} = M_{ij}B_{ij}F_{ij}G_{ij}D_{ij}E_{ij}P_{ij}T_{ij}\vec{V}_{ij}^{\text{true}}$$

- Need to solve for phase errors in time (rate) and frequency (delay) space
- Remember the interferometer phase: $\phi = 2\pi\nu\tau_{obs}$ \rightarrow phase error depends on delay (i.e. against frequency)
- Fringe fitting solves these errors assuming a linear model of the phase error for each antenna i.e.

• Some cases (e.g. space, mm-, low-frequency VLBI) need require higher orders e.g. dispersive delays - $O \frac{\partial^2 \phi}{\partial \nu^2} \Delta \nu$

-

9-

0 0.05 0.1

RA offset (arcsec; J2000)

HOGBOM CLEAN & VARIANTS

- initialize

 a residual map to the dirty map
 a Clean Component list
- I. identify the highest peak in the residual map as a point source
- 2. subtract a fraction of this peak from the *residual map* using a scaled dirty beam, *s(l,m)* x gain
- 3. add this point source location and amplitude to the *Clean Component* list
- 4. goto step 1 (an iteration) unless stopping criterion reached

Self Calibration

The Self Calibration Method

- 1. Create an initial source model, typically from an initial image (or else a point source)
 - Use full resolution information from the model image NOT the restored image (ie. CLEAN +residuals)

- 5. Go to (2), unless current model is satisfactory
 - shorter solution interval, different uv limits/weighting
 - phase → amplitude & phase

Original resolution:

After averaging

Tutorials

- Through all this theory you were working towards a practical understanding too.
- Have experience with interacting with CASA manually and via a script
- > Can perform VLBI calibration for the EVN and image source.

Next few days

Today		W7: EVN continuum p.3 - refine calibration	Jack/Joe
		W7: EVN continuum p.3 - imaging & self-cal	Jack/Joe
6	09:00-10:45	Recap of week 1	Joe/Jack
		W8: 3C277.1 calibration	Joe/Jack
	11:15-12:30	W8: 3C277.1 calibration	Joe/Jack
	14:00-15:30	W8: 3C277.1 calibration	Joe/Jack
	16:00-17:00	Science talk 2	Jack
7	09:00-10:45	L11: Advanced imaging	Jack
	11:15-12:30	W8: 3C277.1 imaging	Joe/Jack
	14:00-15:30	W8: 3C277.1 imaging	Joe/Jack
	16:00-17:00	L12: Life cycle of a project and archives	Jack/Joe