Calibration and fringe-fitting

Jack Radcliffe (SARAO/Pretoria)

DARA Unit 4 Botswana/Namibia 3rd July 2019 BUIST, Palapye, Botswana

Outline

- What affects our data
- A-priori calibration i.e. what's done before you get the data
- What we need to correct / derive and how does CASA implement this
 - Flux-scaling
 - RFI removal
 - Phase-referencing & fringe-fitting
 - Bandpass calibration

What is calibration for?

Solve for these issues using calibration

11/03/2021	L6 - Calibration & fringe-
	fitting

What is calibration for?

Atmosphere

- Ionosphere
- Troposphere
- Water vapour

Antenna / feed

- System temperature
- Primary beam
- Pointing
- Antenna location

LNA / conversion chain

- Clock
- Gain, phase, delay
- Frequency response

Digitiser / Correlator

- Auto-leveling
- Baseline errors

Radio Frequency Interference (RFI)

11/03/2021

L6 - Calibration & fringefitting

4

Calibration before / during observations

- Science observers don't usually need to worry about these (but you • might when commissioning) - i.e. applied before correlation
- Delay tracking ٠
 - Correctable off-line if within Nyquist or sensitivity limit Ο
 - Phase tones can be used to align antenna signals Ο
- Antennas: receiver/subreflector at optimum focus ٠
 - Pointing and tracking with sufficient accuracy Ο
 - Mitigated by self-calibration at field centre only
 - Positions Ο

11/03/2021

- Errors cause bad delays 0
- Cannot transfer phase-ref corrections accurately to target 0

fitting

L6 -	6 - Ca	libra	ation	&	fringe-
		fii	ttina		

Calibration before / during observations

- Correlated data series of complex visibilities
- Calibration before/ during often stored as metadata:
- Metadata includes:
 - Descriptive: antenna table, source names etc.
 - Flagging: antenna not on source etc.
 - Calibration: T_{sys} measurements etc.

Parameterising calibration

With these off-line calibration products in hand:

- We want to parameterise our knowledge of the system as some quantities need to be derived (e.g. phase, delays, amplitudes)
- CASA uses the radio interferometry measurement equation (RIME) to do this, which relates the observed (perturbed) visibility to the 'real'/ ideal (unperturbed) visibility i.e.:

$$\begin{array}{ccc} \hline & Jones \text{ matrix} & True \text{ visibility} & Jones \text{ matrix for antenna } i \\ \hline & Observed \\ \text{visibility} & V_{ij} = J_{ij} V_{ij}^{\text{true}} & \text{where} & J_{ij} = J_i \times J_j \end{array}$$

- The Jones matrix encodes everything that "happens" to the signal from source to correlator.
- This assumes calibration parameters should be antenna-based (we will see later that they can be baseline-dependent)

11/03/2021	L6 - Calibration & fringe-	7
	fitting	1

Decomposing the RIME

• CASA decomposes the RIME calibration equation into different terms which are solved for independently.

Calibration strategy

- 1. Observe **source**
- 2. Observe **calibrator** to measure gains (amplitude and phase) as a function of time.
- 3. Observe **bright calibrator** of known flux-density and spectrum to measure absolute flux calibration, band-pass and residual delays

$$\vec{V}_{ij}^{\text{obs}} = M_{ij}B_{ij}F_{ij}G_{ij}D_{ij}E_{ij}P_{ij}T_{ij}\vec{V}_{ij}^{\text{true}}$$

- CASA decomposes the RIME calibration equation into different terms which are solved for independently.
- These comprise of:
 - Primary Calibration: use of a "known" standard source to determine time and direction-independent quantities e.g. bandpass calibration. These are typically antenna-based effects!
 - 2. Secondary Calibration: estimate local time-dependent conditions with nearby calibrator (e.g. gain calibration amp & phase)
 - **3. Self-Calibration:** use of the target field itself to determine highly time dependent quantities, e.g. refine gain calibration

Choosing Calibrators

- Primary/secondary calibrators should have:
 - Excellent positions (for astrometry)
 - Proper source size ("just compact enough") standard calibrator lists
 - Compact enough to be unresolved on the longest baselines but not so compact that the source is variable
- Well-understood flux density (for flux scale) and spectral shape (for bandpass)
- For polarization calibration: well understood polarimetric properties (including Faraday rotation measure, where appropriate)

11/03/2021

VLBI calibration - a priori calibration

- We want to start with things which are derived by other means e.g. ones that are tracked during observation or known properties of the antenna
- With VLBI calibration, we normally can solve for two terms of the calibration RIME namely:
 - flux-scale
 - Gain curves -

 $\vec{V}_{ij}^{\text{obs}} = M_{ij}B_{ij}F_{ij}G_{ij}D_{ij}E_{ij}P_{ij}T_{ij}\vec{V}_{ij}^{\text{true}}$

_	

System temperature measurement ()

$$\vec{V}_{ij}^{\text{obs}} = M_{ij}B_{ij}F_{ij}G_{ij}D_{ij}E_{ij}P_{ij}\vec{T}_{ij}\vec{V}_{ij}^{\text{true}}$$

- Time-dependent measure of the sensitivity of each telescope
- Comparison to 'standard' signal allows for relative scaling of amplitudes (considering weather, gain-elevation, source brightness)
- For long wavelengths (as with the EVN) use a noise diode

System temperature measurement ()

- can be used to provide a scaling from correlator units
- System Equivalent Flux Density -

where K/Jy]) (Antenna area , efficiency _A)

- Typical values are 10 100 K at frequencies from 1 to ~200 GHz (Lower = more sensitive)
- Few bright (Jy) sources raise significantly (must allow for this for accurate amplitude calibration)

Gain curve calibration

$$\vec{V}_{ij}^{\text{obs}} = M_{ij}B_{ij}F_{ij}G_{ij}D_{ij}E_{ij}P_{ij}T_{ij}\vec{V}_{ij}^{\text{true}}$$

Atmosphere adds noise and absorbs signal

 $T_{\text{received}} = T_{\text{source}} \exp(\tau_{\text{atm}} / \cos(z)) + T_{\text{atm}} (1 - \exp(\tau_{\text{atm}} / \cos(z)))$

- Source would provide temperature T if measured above the • atmosphere optical depth $\tau_{\rm atm}$ and z is the zenith distance.
- Noise is increased for observing at low elevation (large z)

 - Some T_{sys} measurements include this &/or apply analytic gain curve (assume τ_{atm} stable)

11/	202	10	$\cap \mathcal{O}$	1
 /	03		UΖ	

Gain curve calibration

- As well as correcting for the atmosphere noise antennas not rigid
 → their effective collecting area and net surface accuracy vary
 with elevation as gravity deforms the surface.
- More important at higher frequencies

Other a priori calibration

11

- Calibration measurements supplied with data can includes Tsys, gain-elevation and WVR
 - Water Vapour Radiometry (at mm/sub-mm wavelengths): measure atmospheric water line every few seconds, calculate refractive delay of phase and/or absorption
- Antenna position corrections may also be available.
- For VLBI and low frequency, ionospheric total electron content measures can be used to correct dispersive delays (i.e. curvature of delay term across band)
- Others include weather tables to refine gain-el; GPS measurements for position and Faraday rotation
- May need reformatting or removal of bad values
 - Usually employing standard scripts, often by observatory staff

03/2021	L6 - Calibration & fringe-
	fitting

To CASA – do a priori calibration

Fringe fitting - introduction

• Recall the simple 2-element interferometer

- Wave-fronts of a signal from a distant source, arrives at one antenna with a geometrical delay, $\tau_{\rm obs}=(D/c)\sin(\theta)$
- Phase difference 'interferometer phase', $\phi=2\pi
 u au_{
 m obs}$
- ϕ changes with time!

L6 - Calibra	ation	&	fring	je-
fit	ting			

Fringe fitting - introduction

- Signals from both antennas are combined in a correlator
- Correlator estimates and corrects for geometric delays
- For connected arrays e.g. JVLA, ATCA, MeerKAT this simple geometrical delay is enough ... not so for VLBI.

11/03/2021	4.4			04	
	11/	(O:R	120	121	

Why we need fringe-fitting

VLBI vs short baseline arrays

- No fundamental difference but with longer baselines (100's to 1000's km)
- However VLBI arrays are not connected so:
 - \succ Independent clocks and equipment \rightarrow phase/delay errors
 - The delay and rate of the wavefronts vary more rapidly due to completely different atmospheric paths.
 - Geometric delay needs to be exact must be estimated and removed during correlation

Troposphere / lonosphere

11/03/2021

L6 - Calibration & fringefitting

VI BI

Why we need fringe-fitting

The geometric model

Table 22-1. Terms of a VLBI Geometric Model^a

Item	Approx max Magnitude b	Time scale
Zero order geometry.	6000 km	1 day
Nutation	~ 20 "	< 18.6 m yr
Precession	$\sim 0.5 ~{\rm arcmin/yr}$	years
Annual aberration	20"	1 year
Retarded baseline	20 m	$1 \mathrm{day}$
Gravitational delay	$4 \text{ mas} @ 90^{\circ} \text{ from sun}$	1 year
Tectonic motion	10 cm/yr	years
Solid Earth Tide	50 cm	12 hr
Pole Tide	$2 \mathrm{~cm}$	$\sim 1 { m yr}$
Ocean Loading	$2 \mathrm{cm}$	12 hr
Atmospheric Loading	$2 \mathrm{cm}$	weeks
Post-glacial Rebound	several mm/yr	years
Polar motion	0.5"	$\sim 1.2~{ m years}$
UT1 (Earth rotation)	Random at several mas	Various
Ionosphere	$\sim 2~{ m m}~{ m at}~2~{ m GHz}$	seconds to years
Dry Troposphere	$2.3 \mathrm{m}$ at zenith	hours to days
Wet Troposphere	0-30 cm at zenith	seconds to seasonal
Antenna structure	<10 m. 1cm thermal	
Parallactic angle	0.5 turn	hours
Station clocks	few microsec	hours
Source structure	$5 \mathrm{cm}$	years

- Terms that affect the delay > few cm
- Most radio astronomers don't have to worry about these effects
- However, correlator model, not perfect model (due to atmosphere / clock errors)
- Residual phase / delay errors cause decorrelation of signal
- → fringe-fitting solves for this!

L6 - Calibration & fringe-

11/03/2021

How to fringe-fit?

$$\vec{V}_{ij}^{\text{obs}} = M_{ij} B_{ij} F_{ij} G_{ij} D_{ij} E_{ij} P_{ij} T_{ij} \vec{V}_{ij}^{\text{true}}$$

- Need to solve for phase errors in time (rate) and frequency (delay) space
- Remember the interferometer phase: $\phi = 2\pi\nu\tau_{\rm obs}$
- → phase error depends on delay (i.e. against frequency)
- Fringe fitting solves these errors assuming a linear model of the phase error for each antenna i.e.

$$\Delta \phi_i(t,\nu) = \phi_{i,0} + \frac{\partial \phi_i}{\partial \nu} \Delta \nu + \frac{\partial \phi_i}{\partial t} \Delta t \quad \text{Rate term}$$
Phase error at time *t* and *\nu* Delay term

• Some cases (e.g. space, mm-, low-frequency VLBI) need require higher orders e.g. dispersive delays - $\mathcal{O}\frac{\partial^2 \phi}{\partial \nu^2} \Delta \nu$

L6 - Calibration	&	fringe-
fitting		

How to fringe-fit?

• Therefore, for each baseline *ij* this error becomes.

$$\Delta\phi_{ij}(t,\nu) = (\phi_{i,0} - \phi_{j,0}) + \left(\left[\frac{\partial\phi_i}{\partial\nu} - \frac{\partial\phi_j}{\partial\nu} \right] \Delta\nu + \left[\frac{\partial\phi_i}{\partial t} - \frac{\partial\phi_j}{\partial t} \right] \Delta t \right)$$

- Fringe-fitting involves solving the above equation, to obtain the errors.
- Via observations of a bright calibrator → phase referencing Typically assumes that source is a point source at the phase centre.
- Can be done per baseline or globally (i.e. combine all baselines and derive per antenna)
- Without fringe fitting cannot average in phase and time
- Worse for weaker targets

```
11/03/2021
```

How to fringe-fit?

Global fringe fitting

- Use all baselines to jointly estimate the antenna phase, delay and rate relative to a reference antenna
- Solves the baseline phase error equation, with one of the antennas set to the reference antenna
- Delay, rate and phase residuals for reference antenna are set to zero.
- Hence only measures difference, not absolute errors
- Assumes calibrator is a bright point source at phase center (unless model specified!)

11/03/2021

	> inp(fr	ingefit)			
	<pre># fringefit ::</pre>	Fringe fit	delay	and rates	
	vis	=		#	Name of input visibility file
	caltable	=		#	Name of output gain calibration table
	field	=	• •	#	Select field using field id(s) or
				#	field name(s)
2	spw	=		#	Select spectral window/channels
,	intent	=		#	Select observing intent
	selectdata		True	#	Other data selection parameters
	timerange			#	Select data based on time range
	uvrange				
	antenna			#	Select data based on antenna/baseline
	scan			#	Scan number range
	observatior		• •	#	Select by observation ID(s)
	msselect			#	Optional complex data selection
				#	(ignore for now)
	solint	=	'inf'	#	Solution interval: eqs. 'inf'. '60s'
				#	(see help)
	combine	=		#	Data axes which to combine for solve
				#	(obs, scan, spw, and/or field)
	refant	=		#	Reference antenna name(s)
	minsnr	=	3.0	#	Reject solutions below this signal-
				#	to-noise ratio (at the FFT stage)
	zerorates	=	False	#	Zero delay-rates in solution table
•	globalsolve	=	True	#	Refine estimates of delay and rate
				#	with global least-squares solver
	delaywindow	=	[]	#	Constrain FFT delay search to a
				#	window; a two-element list, units of
				#	nanoseconds
	ratewindow	=	[]	#	Constrain FFT rate search to a
				#	window; a two-element list, units of
				#	seconds per second
	append	=	False	#	Append solutions to the (existing)
				#	table
	docallib		False	#	Use callib or traditional cal apply
				#	parameters
	gaintable	=	[]	#	Gain calibration table(s) to apply on
	an infield		F 1	#	the fly Calast a subset of calibrators from
	gaintield			#	select a subset of calibrators from
	intorn		1 1	#	Yaintable(S)
	Turerb		11	#	agintable (-linear)
	c numa n		r1	#	Spectral windows combinations to form
	spwiliap			#	for gaintables(s)
				#	
	parang	=	False	#	Apply parallactic angle correction on
				#	the fly

In CASA

Important aside

Point sources

- Lots of calibration assumes that your phase calibrator is point-like **and** in the centre of the field (i.e. phase center).
- Calibration essentially compares your model (i.e. point source) with the observed visibilities and derives corrections.
- A true point source is flat in amplitude and phase space (see below)
- If your phase calibrator is **not** point-like then we need to derive a model. We will learn more about this in the self-calibration lecture.

Phase referencing requirements

- Fringe-fitting requires observations of a bright, compact source → the phase-calibrator, C.
- Nodding between C and target (T)
- Cycle time must be shorter than the atmospheric fluctuations
 ~10 mins at 5 GHz; ~5 mins at 1.6 GHz
- C must be close to T (typically deg)
- Antenna positions must be known to within a few cm!
- Obtain solutions of the phase, rate and delay by applying the fringe-fitting technique to C and interpolate to T

Biggest problems:

- Wet troposhere & fewer calibrators at high frequencies
- Ionosphere at low frequencies

11/03/2021

L6 - Calibration & fringe-

fitting

Closure Phases

$$\begin{split} \phi_{ij} \text{ is the true phase} \\ \Theta_{12} &= \phi_{12} + \theta_1 - \theta_2 \\ \Theta_{23} &= \phi_{23} + \theta_2 - \theta_3 \\ \Theta_{31} &= \phi_{31} + \theta_3 - \theta_1 \end{split}$$

- All antennas have different random phase fluctuations due to atmosphere.
- Closure phase, Θ_c is the sum of simultaneously observed phases of a source on three baselines forming a triangle
- Independent of station-based phase errors.
- Phase errors due to different atmospheric variations are cancelled in the closed loop
- Fringe-fitting (and self-cal) uses this triangle to solve for the residual phases, rates and delay

L6 - Calibration & fringefitting

 $\Phi_c = \phi_{12} + \phi_{23} + \phi_{31} + \text{noise}$

- Used to be an AIPS-only task but is now part of CASA (since v 5.3)
- For VLBI, there are (normally) two times we need to fringe-fit.
 - 1. For removing instrumental delays
 - 2. Deriving time, rates and delays variations vs time (known as a multi-band fringe fit)

1. Instrumental delays

- Typically induced by differing instrumental paths across the receiver subbands (spws)
- Causes 'jumps' in phase across the sub-bands
- Use short integration (~2 mins), on a bright source to get enough S/N per subband.
- Instrumental delays are due to antennas and are not expected to vary across time.

Instrumental delays

Instrumental delays

11/03/2021

Instrumental delays

Phase:corrected vs. Frequency 200 After instrumental delay 150 Showing corrected 100 phase vs. Phase:corrected (degrees) frequency on bright 50 calibrator 0 (Effelsberg baselines, 1-scan, -50 LL polarisation) -100 Coloured by antenna! -150 Same scan as -200 solutions derived 4.92 4.94 4.96 5.02 5.04 5.06 4.98 5.00 Frequency (GHz) GEO for! L6 - Calibration & fringe-11/03/2021 32 fitting

Instrumental delays

- After instrumental delay
- Showing corrected phase vs. frequency on bright calibrator (Effelsberg baselines, 1-scan, LL polarisation)
- On different scan!
- Phase jumps between sub-bands gone but time variable remains!

11/03/2021

fitting

2. Multi-band fringe-fitting

- With instrumental delays removing contributions from the antennas we can expect that the dominant contributor is now the atmosphere.
- This means that any solutions needs to be on the phase calibrator as atmosphere is approximately same as target source
- We want to derive the rate, phase and delays vs time.
- The instrumental delays (time-independent) now allow us to combine the sub-bands together when deriving our timedependent solutions, therefore phase ref source doesn't need to be so bright!

Multi-band fringe-fitting

Instrumental delays only (All baselines to Effelsberg)

Multi-band fringe-fitting

Multi-band delay solutions

- Noto telescope only shown here
- One solution per scan and spw combined
- Delay, phase, rate solutions primarily due to atmosphere

L6 - Calibration & fringefitting

11/03/2021

Multi-band fringe-fitting

Instrumental delays + multi-band delays (All baselines to Effelsberg)

Back to CASA – fringe-fitting

Bandpass calibration

$$\vec{V}_{ij}^{\text{obs}} = M_{ij} B_{ij} F_{ij} G_{ij} D_{ij} E_{ij} P_{ij} T_{ij} \vec{V}_{ij}^{\text{true}}$$

- With the first-order phases, delays & rates corrected, what is left is to correct the bandpass.
- Bandpass is the frequency-dependent sensitivity across the observed frequency range

Bandpass calibration

- Bandpass correction derives the amplitude and phases **per** antenna.
- Each antenna will have a distinctive amp vs freq shape which can be derived from all baselines to that antenna! (It's a bunch of lots of simultaneous equations)
- Bandpass calibrators must be extremely bright as we need to get solutions per channel (and not subband!) to track the shape across the bandwidth.

Back to CASA – bandpass & data splitting

Amplitude & phase calibration

$$\vec{V}_{ij}^{\text{obs}} = M_{ij} B_{ij} F_{ij} G_{ij} D_{ij} E_{ij} P_{ij} T_{ij} \vec{V}_{ij}^{\text{true}}$$

- Complex gain calibration solves for phases and amplitudes versus time.
- Fringe-fitting will typically solve for phases (assuming a point source) i.e. :

Amplitude & phase calibration

- · Fringe-fitting does not correct amplitudes so you should do this separately
- Amplitude variations due mainly to variable gain in the antenna amplifiers.

Amplitude & phase calibration

- · Fringe-fitting does not correct amplitudes so you should do that separately
- Amplitude variations due mainly to variable gain in the antenna amplifiers.

Tips for calibration

- Inspect your data bad data i.e. telescopes off source / RFI can adversely affect your data. (We will discuss more on this in the RFI lecture)
- Make notes and backup your data you will need to describe the data calibration when you write papers and it helps you identify where things go wrong.
- Experiment. E.g. try different solution intervals, calibration techniques. We will discuss this in more detail in a future lecture
- Visualise your data. It allows you to see where things go wrong.

Thanks to Anita Richards, Joe Callingham, John McKean and George Heald for slide ideas

11/03/2021	L6 - Calibration & fringe-	45
	fitting	