EVN image of J0751+2716 gravitational lens (Spingola+18)

An Introduction to EVN data

Jack Radcliffe (SARAO/Pretori

DARA Unit 4 Botswana/Namibia ^{2nd} July 2019 BUIST, Palapye, Botswana

SARAO

What is the European VLBI Network (EVN)?

11/03/2021

What is the European VLBI Network (EVN)?

- Array of 12(ish) telescopes but can be more!
- Can include:
 - LBA (Australia)
 - VLBA (USA)
 - EAVN (East Asia)
 - AVN (Africa) soon
- Largest is Effelsberg 100m (occasionally Arecibo 305m)
- Observe from 0.3-43 GHz
- Has the largest collecting area of any parabolic dish array.

And what is the EVN useful for?

Some science highlights:

Tidal disruption event (TDE)

(Mattila et al. 2018)

 Powerful gravity of a supermassive black hole rips apart a star that has wandered too close,

And what is the EVN useful for?

Some recent highlights:

Tidal disruption event (TDE)

(Mattila et al. 2018)

 Radio emission expanding in one direction, forming a jet moving at ¼ speed of light

Jul 2005 Jul 2005 X Band 8.4GHz X Band 8.4GHz

And what is the EVN useful for?

Some recent highlights:

Gravitational lensing

(Spingola et al. 2018)

- Gravitational lensing allows us to observe the faintest sources.
- Radio emission bent by the gravitational field of a massive object (the lens) located between the source and the Earth, allows us to infer about both the distant source and the lens.
- Composition of dark matter across the lens, found to be clumpy and uneven.

How do we get our EVN data (or any radio data)?

1. Start with a great science idea

- Inspiration can come from previous observations.
- Outline what telescope is suitable
- We will talk more about this process more in later lectures!

11/03/2021

How do we get our EVN data (or any radio data)?

11/03/2021

How do we get our EVN data (or any radio data)?

2. Proposal writing - Key: We should ensure that the sources are visible!

11/03/2021

How do we get our EVN data (or any radio data)?

3. Proposal gets assessed

- The time allocation committee (TAC) decides who will use the telescope.
- Only limited amount of time per proposal call so only the strongest get all the time.

11/03/2021

How do we get our EVN data (or any radio data)?

4. If successful, schedule observation

• Need to decide calibration strategy

Typical (simple strategy):

- 1. Observe bright source with known flux density for flux scale calibration (or fringe finding in VLBI!).
- Go to phase calibrator (reasonably bright usually ~100 mJy at least).
- 3. Go to source (which might be too faint to observe in real time).
- 4. Back to phase calibrator (time set by frequency, observing conditions, etc).
- 5. Repeat 3 and 4 until reach desired noise.
- 6. Usually finish on gain cal.

Explained more in calibration lecture!

5. Observe

VLBI observations done for you typically

6. Correlation

- For EVN data, most data recorded at each telescope onto computer disk packs
- Shipped to JIVE correlator (now possible to get all the data over the internet in select cases; e-VLBI)

11/03/2021

11/03/2021

EVN data reduction workshop – the data N14C3 – Network Monitoring Experiment (NME)

Not acquired through typical proposal means

- EVN is a ad-hoc array, telescopes are set up differently across the year so set-up issues can occur e.g. the polarizations need to be the right way round.
- To test these, and identify problems before proposers get their data, a short observation is used to test the array
- These NMEs are short (~few hour) observations which are useful to evaluate performance of the array.

Ideal for tutorial purposes as data has a size of ~3GB smallcompared to some radio data sets >10s TB

NI4C3 – the observations

- Observation on 22 Oct 2014 for 3 hours.
- Targeted 5 sources (including fringe-finders, phase calibrators and target sources)
- Observed at C-band (~5GHz)
- Sweet spot for VLBI as:
 - Receivers are sensitive
 - Sky noise is low (see right)
 - and limited impact from atmosphere!

11/03/2021

NI4C3 – the observations

EVN OBSERVATORIES	TELESCOPE Code Diameter(m)
	-
Jodrell Bank (UK)	Jb-1 Lovell 76
	Jb-2 Mk2 25
Cambridge (UK)	Cm 32
Westerbork (NL)	Wb 25
Effelsberg (DE)	Ef/Eb 100
Medicina (IT)	Mc 32
Noto (IT)	Nt 32
1	-
Sardinia (IT)	Sr 65
Onsala (SE)	0n-85 25
	0n-60 20
Sheshan (Shanghai, CN) Sh 25
[Tianma(Shanghai,CN)	Tm65 (T6) 65
Nanshan(Urumqi,CN)	Ur 25
Torun (PL)	Tr 32
1	
Metsaehovi (FI)	Mh 14
Yebes (ES)	Ys 40
Arecibo (USA)	Ar 305
Hartebeesthoek (SA)	Hh 26
	Ht 15
Wettzell (DE)	Wz 20
	- j
Svetloe (RU)	Sv 32
Zelenchukskaya (RU)	Zc 32
Badary (RU)	Bd 32

- 12 antennas used (highlighted in yellow)
- Data recorded on disc
- measurements recorded separately.
 - Used to set the flux-scale of your observations (i.e. you know how bright something is in reference to a 'standard'.
- Gain-elevation curves also separately available.
 - Takes into account differing volume of atmosphere looking through) which affects gain.
- Data correlated at JIVE, stored in FITS IDI format.

11/03/2021

NI4C3 – observing strategy

Observations are set-up so that you can calibrate your data!

Key requirements:

- Fringe-finder source ultra-bright source used to find delays (geometric) during correlation.
- Phase calibrator bright, compact source near to target source to track approximate phase (+ amp) induced by atmosphere & instruments vs time & frequency.
- Flux calibrator used to set the flux scale (can be standard source, or noise diode which provides a measurement)

NI4C3 – observing strategy

• Starts at 12:00 - ends at 15:00

NI4C3 - correlation

- Data correlated at JIVE using SFXC correlator.
- During correlation delay is adjusted to ensure 'fringes' on bright source known as 'fringe finder'
 - · i.e. timing corrected to provide constructive interference
- Long scan at start of phase reference cycle provides additional refinements.
- Residual delay errors are likely! $\tau_{obs} = \tau_{geom} + \tau_{rot} + \tau_{str} + \tau_{tropo} + \tau_{iono} + \tau_{insts} + e_{noise}$
 - > Source orientation wrt. position of telescope, Earth rotation
 - Source structure
 - Atmospheric refraction
 - Instrumental electronic path effects

NI4C3 – phase vs frequency (delay)

- Fringe finders used to calculate delay corrections (refine further with calibration
- These data are pretty good!

 Very important to correct before averaging (otherwise decorrelate)

11/03/2021

L4 - EVN Introduction

20

NI4C3 – manual calibration strategy:

- Apply and gain-elevation curves
 - Provides approximate flux scale by using SEFDs (emission in Jy equivalent to system temperature)
- Inspect and remove radio frequency interference (RFI)
- Inspect brightest source
- Select ~2 min good data to derive instrumental delays.
 - Corrects for antenna induced delays ~ constant over observation)
 - Short period to avoid time-variable decorrelation
 - Assume clock errors constant, apply correction to all data
- Fringe-fit to derive phase, rate (phase vs time derivative), and delay (phase vs frequency) on both phase cals

NI4C3 – manual calibration strategy:

- At several stages, apply parallactic angle correction, i.e. compensate for different effects on L and R feeds as Alt-Az antennas rotate on the sky
- Flag brightest source first, flag other sources as calibration is applied (easier to see bad data)
- Check amplitude v. uv distance for signs of resolution
- Split out each phase-ref target pair
- Bandpass amplitude and phase are calibrated to allow averaging of all channels

NI4C3 – manual calibration strategy:

- Apply calibration to phase ref and image
- Use image as model for phase, delay & amp calibration of phasereference
- If very resolved, repeat until good model is achieved
- Apply phase and amplitude solutions derived from the phase ref to the target (bandpass solutions already applied)
- Image target
- Self calibrate target (if bright enough)
- Do some science! (in the real world)

The result – you have to wait and see!

Thanks to Anita Richards & Joe Callingham for some slides

11/03/2021