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Credits: J. Radcliffe, N. Jackson (ERIS2015), A. Offringa (ERIS 2015), T. Muxlow (ERIS 2013)
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Topics discussed:

• Recap of CLEAN 

• When to use multi-scale or other deconvolution methods

• The effect of and solution to w-terms 

• Multi-term deconvolution

• Self-calibration using CLEAN components 

• Primary beam correction 

• Mosaicking

• Direction-dependent effects during imaging 

INTRODUCTION



After calibration the visibilities are represented by (+ errors):

interferometer’s geometrical vector

sky position

sky brightness (our ‘image’)

Want to calculate              from 
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Nb:  notation is essentially the same as  coordinates used in the prev. talks

INTRODUCTION



INTRODUCTION

If we have a small field of view (l~0, m~0) then w→0:

The relationship between                and              is? 
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OUR EXAMPLE
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THE ‘DIRTY’ IMAGE
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Example VLA-A data targeting M82



DECONVOLUTION

The Högbom algorithm (1974)

1. Find the strength and position of the brightest peak.

2. Subtract the dirty beam x peak strength x loop gain/damping factor  position of 
the peak, the dirty beam B multiplied by the peak strength and a damping factor 
(usually termed the loop gain).

3. Go to 1. unless any remaining peak is below some user-specified level or number 
of iterations reached.

4. Convolve the accumulated point source model with an idealized `CLEAN' beam 
(usually an elliptical Gaussian fitted to the central lobe of the dirty beam).

5. Add the residuals of the dirty image to the `CLEAN' image.

7



 HÖGBOM CLEAN IN ACTION
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Hogbom CLEANED image



CLEAN IMAGE & MODEL
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Hogbom CLEANED model



T H E  M A N Y  FO R M S  O F  C L EA N

Maximum Entropy Method Clark 

Clark-Stokes
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DECONVOLVING DIFFUSE STRUCTURE
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• Improved algorithm by Cornwell (2008) : “multi-scale clean” 

• Fits small smooth Gaussian kernels (and delta functions) during a Högbom 
CLEAN iteration

• Implemented in CASA tclean. Advised to use pixel scales corresponding to orders 
of the dirty beam size and avoid making scale too large compared to the image 
width/lowest spatial frequency.

• E.g. For example, if the synthesized beam is 10" FWHM and cell=2", try 
multiscale = [0,5,15]

CASA tclean
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MULTI-SCALE CLEAN

Multi-scale CLEANED image
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MULTI-SCALE CLEAN

Multi-scale CLEANED model



WIDE-FIELD IMAGING

2D Fourier Transform does not hold for new sensitive, wide-band, 
wide-field arrays

Non co-planar baselines becomes a problem i.e. l,m,w >> 0
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Three-dimensional visibility fuction can be transformed to a three-
dimensional image volume - this is not physical space since  , &  are 
direction cosines. 

The only non-zero values of I lie on the surface of a sphere of unit 
radius defined by 
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So how do we achieve this? Two solutions available:

i. Faceting - split the field into multiple images and stitch them together

ii. w-projection - most used solution, effectively performs the above to recover 

Both available in CASA!

WIDE-FIELD IMAGING

The sky brightness consisting of a number 
of discrete sources       are transformed 
onto the surface of this sphere. 

The two-dimensional image       is recovered 
by projection onto the tangent plane at the 
pointing centre 
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i .  FACETING

• Takes advantage of the small field approximation (l,m~0) so the image sphere is 
approximated by pieces of many smaller tangent planes. 

• Within each sub-field, standard two-dimensional FFTs may be used.

• Errors increase quadratically away from the centre of each sub-field, but these 
are acceptable if enough sub-fields are selected. 

• Facets can be selected so as to cover known 
sources. 

• Facets may overlap allowing complete 
coverage of the primary beam 

CASA clean implementation



i i .  w-PROJECTION
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• Very dependent on zenith angle, co-planarity of array, field of 
view and resolution.

• Convolution theorem no longer works when w-terms present.

• CLEAN assumes constant PSF, but PSF changes (slightly) over the 
image.

• Solved with Cotton-Schwab algorithm (Schwab 1984) (used in 
CASA automatically).

Cornwell et al. 2011
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The Cotton-Schwab + w-projection algorithm: 

1) Make initial dirty image & central PSF - Perform minor iterations:
 
• Find peak
• Subtract scaled PSF at peak with small gain
• Repeat until highest peak ~80-90% decreased 

2) Major iteration: ‘Correct’ residual

• Predict visibility for current model 
• Subtract predicted contribution and re-image 

i i .  w-PROJECTION

CASA clean
implementation
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w-PROJECTION

Take the GOODS-N field as observed by 1.4 GHz e-MERLIN

Pointing centre

Source 1

Source 2



w-PROJECTION

Source 1: Near the pointing centre

No w-projection w-projection

Pretty much identical! Small field approximation holds and 2D FT suffices



Source 2: Away from the pointing centre

No w-projection w-projection

Small field approximation breaks and you need w-projection!

w-PROJECTION
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MULTI-FREQUENCY SYNTHESIS

• Multi-frequency synthesis (MFS) means gridding different 
frequencies on the same uv grid 

Conway & Sault (1995)



M U LT I - F R E Q U E N C Y  D E C O N V O L U T I O N

• Similar but not the same! (same name often used). Also known as 
multi-term multi-frequency synthesis (MTMFS) imaging.

Takes spectral variation of sky brightness distribution into account during 
deconvolution using linear Taylor series approximation.

Flux
Density

Frequency

Assumed flat spectrum

Actual source spectrum
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MULTI-FREQUENCY DECONVOLUTION

 represents the sky emission in terms of a Taylor series about a reference 
frequency: 

A power model is used to describe the spectral dependence of the sky. 
One practical choice is a power law with emission. 

• Useful for wideband, high dynamic range and sensitive imaging. 
• Incorporated in CASA in combination with multi-scale CLEAN as 

‘mtmfs’
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COMPRESSED SENSING

• Recent focus on deconvolution using  ‘Compressed Sensing’ (abbrev. 
CS – but CS can mean ‘Cotton-Schwab’ too) 

• CS methods assume the sky is 'sparse' (“solution matrix is sparse in 
some basis”) 

• Minimizes “L1-norm” (= abs sum of CLEAN components)

• Högbom clean is actually (almost) a compressed sensing method 
called “Matching Pursuit”

• CS considers MP to be non-ideal... but radio data is not the perfect CS 
case: Calibration errors, w-terms 
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COMPRESSED SENSING

Source structure looks like (Hogbom cleaned):



27

COMPRESSED SENSING

Model using CS: 
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COMPRESSED SENSING

Model using multiscale: 
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• Compressed sensing does not work well with calibration 
artefacts 

• Multi-scale is more robust 

• On well-calibrated data: 
CS gives more accurate model, but residuals don't 

improve much .

• Not implemented in CASA (only available in specialised 
LOFAR imager (AWImagerCS, wsclean) or stand-alone 
packages e.g. Purify

COMPRESSED SENSING



SELF-CALIBRATION USING CLEAN
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Self-calibration recap:

Image,
de-convolve,
create model

Given:  

Use model to calibrate gain Jones 
matrix (phase and/or amp)

Replace with

And.. repeat until model/solution converges!
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SELF-CALIBRATION USING CLEAN

• Clean components can be used as calibration model
• Often applied as:  

Phase calibration

Shallow CLEAN

Phase calibration

Deep CLEAN

Amplitude & phase calibration

Deep CLEAN

(avoid CLEAN bias)
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SELF-CALIBRATION USING CLEAN

Self-calibration 
improvements on 
C-band e-MERLIN 
observations of 
3C277.1 



PRIMARY BEAM CORRECTION
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• Correction is required for the antenna response
 
• This is called “primary beam” correction (as opposed to the 

synthesized beam / psf ) 

• For dishes, the primary beam is ~constant but can be very 
complex away from the FWHM.

To correct for: multiply final image with the inverse beam!

Scalar for total brightness, matrix for polarised 
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PRIMARY BEAM CORRECTION

Complex sidelobe structure + asymmetries!

Knockin primary beam holographic scan
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PRIMARY BEAM CORRECTION

Primary beam 
corrected 
JVLA+MERLIN 
image of GOODS-N

Note the increased 
noise level towards 
the edge of the 
field



VARIABLE PRIMARY BEAMS

• Primary beam of arrays can vary with time and frequency! 

• Has to be accounted for during cleaning and primary beam 
correction if imaging the whole primary beam (CASA has this 
for the JVLA + ALMA.  VLBI arrays don’t image the pb often!) 
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VARIABLE PRIMARY BEAM

Primary beam spectral variation for the UK Lovell Telescope 1.4-1.6GHz 

Image credit: Nick Wrigley
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MOSAICKING

What if this is our primary beam and we want to see the FR-I galaxy too?
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MOSAICKING

We can use multiple pointings and combine them with correct weighting
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MOSAICKING

• To create the mosaicked image

• Need to weight with 1/ = (primary beam)2 or 
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DIRECTION DEPENDENT CALIBRATION

• Direction dependent (DD) effects may need further corrections 
applied during imaging… not a fully solved problem!

• Can be ionosphere, tropospheric, instrumental (e.g. a - 
projection)

• Affects position, brightness & polarisation angles! 

Before DD cal After DD cal

Yattawata SAGECal (2007)
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DIRECTION DEPENDENT CALIBRATION

Possible solutions:
• Image in small ‘facets’ where DD's effects are constant
• Peeling 
• Direction-dependent calibration during visibility gridding (LOFAR 

does this)
• For VLBI, multi-source self-calibration (below)

Pre-MSSC Post-MSSC

Radcliffe et al. 2016
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Topics discussed:

• CLEAN 

• When to use Multi-scale or other deconvolution methods

• The effect of and solution to w-terms 

• Multi-term deconvolution

• Self-calibration using CLEAN components 

• Primary beam correction 

• Mosaicking

• Direction-dependent effects during imaging 

SUMMARY 
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