Class Exercise

Flux is related to the luminosity by
$f=\frac{L}{4 \pi d^{2}}$
The luminosity of the Sun is $4 \times 10^{26} \mathrm{~W}$ and the Earth-Sun distance is $1 \mathrm{AU}=1.5 \times 10^{11} \mathrm{~m}$. So
$f=\frac{4 \times 10^{26}}{4 \pi\left(1.5 \times 10^{11}\right)^{2}}$
$=1400 \mathrm{Wm}^{-2}$

A typical solar panel produces $\sim 500 \mathrm{Wm}^{-2}$

Magnitudes and Colours

- Brightness
- Apparent magnitude
- Absolute magnitude
- Colour

Brightness

- apparent brightness of stars is measured in magnitudes.
- historically this was a 1 to 6 scale for stars visible to the naked eye. magnitude 1 = brightest magnitude 6 = faintest
- now magnitude is quantified as a logarithmic scale, such that a difference of 5 magnitudes corresponds to a factor of 100 in monochromatic flux, f_{λ}

Pogson's Relation

- the apparent magnitudes of two stars m_{1} and m_{2} are related to their fluxes f_{1} and f_{2} by

$$
\begin{aligned}
& \frac{f_{1}}{f_{2}}=100^{\left(m_{2}-m_{1}\right) / 5} \\
& \quad=10^{2\left(m_{2}-m_{1}\right) / 5}=10^{0.4\left(m_{2}-m_{1}\right)} \\
& \therefore \log \frac{f_{1}}{f_{2}}=\frac{2}{5}\left(m_{2}-m_{1}\right) \\
& m_{2}
\end{aligned}-m_{1}=2.5 \log \frac{f_{1}}{f_{2}} \quad l
$$

known as Pogson's Relation

Class Example

- How many times fainter can the Hubble Space Telescope see (limiting magnitude +30.0) compared to a large ground-based telescope with limiting magnitude +21.0 ?

How many times fainter can the Hubble Space Telescope see (limiting magnitude +30.0) compared to a large ground-based telescope with limiting magnitude +21.0 ?

$$
\begin{aligned}
& m_{2}-m_{1}=2.5 \log \frac{f_{1}}{f_{2}} \\
& 30-21=2.5 \log \frac{f_{1}}{f_{2}} \\
& \log \frac{f_{1}}{f_{2}}=\frac{9}{2.5}=3.6 \\
& \frac{f_{1}}{f_{2}}=10^{3.6}=4000
\end{aligned}
$$

Apparent Magnitude

- The apparent magnitude, m, of a star is defined relative to the star Vega, which is defined to have a magnitude of zero.
- The flux of Vega is referred to as the 'zero magnitude flux' and is the zero point for the magnitude scale.

Absolute brightness

- Apparent brightness depends on both the luminosity or power $L(\mathrm{~W})$ of the star and its distance d (m or pc)
- (the parsec (pc) will in Workshop 2)
- An intrinsically luminous star which is far away can have a similar apparent brightness to an intrinsically faint one nearby.

Absolute Magnitude

- To compare absolute brightness need to define a reference distance D.
- Absolute magnitude M is the apparent magnitude a star would have if it was at a distance $D=10$ parsecs.

Since $\frac{f(D)}{f(d)}=\left(\frac{d}{D}\right)^{2}$
$m-M=2.5 \log \frac{f(D)}{f(d)}=2.5 \log \left(\frac{d}{D}\right)^{2}$
Taking $D=10 \mathrm{pc}$ and if d is in pc
$m-M=5 \log \frac{d}{10}$
$m-M=5 \log d-5$

Class Example

- What is the absolute magnitude of the star Betelgeuse that has apparent magnitude $\mathrm{m}=+0.5$ and distance of 220 pc ?

- What is the absolute magnitude of the star Betelgeuse that has apparent magnitude $\mathrm{m}=+0.5$ and distance of 220 pc ?

$$
\begin{aligned}
& m-M=5 \log d-5 \\
& M=m-5 \log d+5 \\
& =0.5-5 \log 220+5 \\
& =-6.2
\end{aligned}
$$

- Compare to the Sun that has $M=+4.8$

Stellar Colours

- Stars will have different brightnesses in different wavelength regions.
- Hot stars are relatively blue
- Cool stars are relatively red.
- Measure this by obtaining brightness through different filters such as the Blue (B band) at 430 nm and Visible (V band) at 550 nm

Credit: ESA \& NASA; Acknowledgement: E. Olszewski (U. Arizona) HST

Credit: Data from M. Bessell

B-V Colour

- can measure apparent magnitude through these filters to give:
m_{B} and m_{V} also written as B and V
- if $m_{B}<m_{V}$ or $B-V$ is negative then the star is blue
- if $m_{B}>m_{V}$ or $B-V$ is positive then the star is red

Zero Point

- Magnitudes are calibrated relative to the star Vega which is defined to be zero magnitude in all wavebands
- Vega ($T_{\text {eff }}=10000 \mathrm{~K}$) $m_{B}=m_{V}=0.0$ and $B-V=0.0$
- Other examples:
- Sun ($T_{\text {eff }}=5800 \mathrm{~K}$) has $B-V=+0.6$
$-\varepsilon$ Ori ($T_{\text {eff }}=25000 \mathrm{~K}$) has $B-V=-0.2$

From Zeilik Fig 11-4

Summary

- the logarithmic magnitude scale is used to measure the brightness of star, both apparent and absolute
- the brightness of stars in different colour filters is used to quantify the colour of stars
- the colour of a star is related primarily to its surface temperature

Class Example

- The star Vega is used as the standard star for the magnitude system and has its magnitude at all wavebands defined as 0 . The flux measured in the V -band for Vega is $f_{\mathrm{m}=0}=3.8 \times 10^{-11} \mathrm{Wm}^{-2} \mathrm{~nm}^{-1}$. What is the V-band flux for a star with an apparent magnitude $m_{V}=26.0$?

